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Abstract 

The optimal Fourier transform (OFT) is a new development in Fourier analysis, with greater 

sensitivity and frequency resolution than the traditional discrete Fourier transform (DFT). It 

takes much longer to compute than the DFT, but offers benefits in analyzing noisy datasets. 

In particular, the OFT is better than the DFT at estimating the exact frequencies of sinusoids 

in a time series. 

Like the DFT, the OFT estimates the spectrum of a time series, describing its sinusoids with a 

series of coefficients of cosines and sines. Unlike the DFT, it can analyze irregular time series 

(data points not equally spaced), it considers all frequencies (rather than just a small set of 

equally-spaced frequencies like the DFT), it orders the spectral sinusoids by amplitude (so the 

lesser ones, more likely to be describing noise, can be discarded or never computed), it typi-

cally describes the spectrum in far fewer sinusoids than a DFT (it stops when the sum of the 

spectral sinusoids is close enough to the original time series), but it is not invertible (the orig-

inal time series cannot be exactly recovered from the OFT of the time series).  

This paper includes examples of the OFT doing things that the DFT cannot do. 

This paper also introduces the manual Fourier transform (MFT), which analyzes a time series 

into a spectrum of sinusoids at a given set of frequencies. The DFT is a special case of an 

MFT. The MFT is one of the key ingredients in the OFT. In turn the building blocks of the 

MFT are the four suprod functions, which are also introduced here. 

The OFT, MFT, and suprods are original, as far as we know. They are unlikely to be com-

pletely original because the ideas are obvious, but we cannot find similar work elsewhere. 
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If reading this as a pdf, consider navigating the document by headings—click on the “Book-

marks” icon in the small column on the left of the pdf window. 

If reading this in Microsoft Word, consider navigating the document by headings in the Nav-

igation Pane—on the “View” tab, “Show” section, click “Navigation Pane”. Best at 120%. 

1 Introduction 

The traditional tool for estimating the spectrum of a time series is the discrete Fourier trans-

form (DFT), but the DFT only looks for sinusoids at certain frequencies. If the time series 

consists of a single sinusoid at some other frequency, then the DFT will produce a spectrum 

of many sinusoids all at the wrong frequency (whose sum is the contained sinusoid, but that 

doesn’t alert you to the fact that the time series is a single sinusoid, let alone tell you its fre-

quency). What if we want to detect the frequencies of sinusoids in the time series as precisely 

as possible? 

The optimal Fourier transform (OFT) is a newly developed version of the Fourier transform 

that considers sinusoids at all frequencies (from zero to the Nyquist limit). It takes much 

longer to compute than the DFT, because it uses multi-variable function minimization to fit 

sums of sinusoids at variable frequencies to the time series.   

In this document we briefly discuss the continuous Fourier transform and the discrete Fourier 

transform, applied to real-valued functions, in order to state our definitions and to explain 

those versions of the Fourier transform in the same notation as we use for the OFT.  

Then we get to the new developments. We develop the four suprod functions, then the manu-

al Fourier transform (MFT), then the OFT—because the suprods are the building blocks of 

the manual Fourier transform, which in turn is one of the basic building blocks of the OFT. 

Then we look at some examples comparing the OFT to the DFT, with the OFT doing things 

the DFT cannot. Finally we show how the OFT and MFT can be applied to irregular time se-

ries (those whose data points are not equally spaced in time). 

The special functions I (indicator) and pha (phase) are used in this document; they are de-

fined in Appendix A. 

2 Sinusoids 

In Fourier analysis, a function is expressed as a sum of sinusoids. In Fourier synthesis, which 

is the inverse of Fourier analysis, a bunch of sinusoids are added to form a function. 
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Figure 1: The sinusoid in t at frequency f, with amplitude A and phase φ.  

The archetypal sinusoid in time t and at frequency f (in cycles per unit of time), with ampli-

tude A and phase   (in radians), is the function 

      cos 2 cos( )cos 2 sin( )sin 2t A ft A ft A ft        , (1) 

which is defined on all real numbers ( t ). 

3 The Fourier Transform 

The Fourier transform is a tool for analyzing a function of a continuous real variable (such as 

time) into a sum of sinusoids, called the spectrum of the function. We will define it and ex-

amine just a couple of its properties before moving on to time series and discrete transforms. 

3.1 Fourier Transforms of Complex-Valued Functions 
Let g be a function defined on all real numbers (such as for all time). Let g be complex-

valued (because complex numbers are an accounting tool for representing sinusoids, this is 

somewhat unmotivated and even nonsensical, but it is traditional). Let ( )g t  and ( )g t  re-

main finite as t becomes infinite. Let g not be “extremely” discontinuous (or the integrals 

here do not converge; this is generally not an issue with “real-world” functions). Let the Fou-

rier transform of g be the complex-valued function F. Let the argument of F vary over all the 

real numbers and be called the frequency f. 

Synthesis: 

  ( ) ( )exp 2g t F f i ft df



     for t . (2) 

Analysis:  

  ( ) ( )exp 2F f g t i ft dt



    for f  . (3) 
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We write the real and imaginary parts of F as realF  and 
imgF  (which are real-valued):   

 real img( ) ( ) ( )F f F f iF f  . (4) 

The relationship between g and its (complex-valued) complex Fourier transform F can be ex-

pressed by the complex Fourier transform operator F: 

   ( )g f F fF   or     real img( ) ( ) ( )g f F f iF f F . (5) 

 
 

The Fourier transform synthesizes g as a sum of complex exponentials, typically 

      exp 2 cos 2 sin 2i ft ft i ft     , (6) 

where i is the square root of 1 (complex numbers are extremely useful for representing si-

nusoids in the context of linear invariant systems; don’t take the square root of −1 literally). 

Thus, after applying the complex multiplication in its integrand, the synthesis integral synthe-

sizes g as a sum of sinusoids. The units of frequency are cycles per unit of time; for example, 

if t is measured in years then f is measured in cycles per year (cycles are dimensionless). 

The synthesis employs one sinusoid at each frequency f (though see Fig. 1: a sinusoid with a 

negative frequency has the same period as a sinusoid with the absolute value of that frequen-

cy, which is ambiguous). 

We can calculate F from g (by analysis, or the forward transform) and g from F (by synthe-

sis, or the inverse transform), so the information in the function can be fully represented ei-

ther as g (in which case we say it is in the time domain, if g is a function of time) or as F (in 

the frequency domain). The Fourier transform is thus invertible. 

We haven’t proved that, given the definition of the Fourier transform in the analysis Eq. (3), 

the Fourier transform synthesis in Eq. (2) is correct. There is an intricate mathematical proof, 

reasonably well-known, that we won’t reproduce here. 

3.2 Fourier Transforms of Real-Valued Functions 
Almost all functions of interest are real-valued, and the Fourier transform becomes simpler 

when g is real-valued. Everything above about complex-valued functions still applies, be-

cause a real-valued function is just a complex-valued function whose imaginary part is zero.  

If g is real-valued then its Fourier transform is complex-valued, but by Eq. (3) 

 
real real

img img

( ) ( )
0,

( ) ( )

F f F f
f

F f F f

  


   
 (7) 

so the values of the Fourier transform at negative frequencies are redundant.  

It is easier to work with Fourier transforms of real-valued functions by focusing on their co-

sine and sine parts, denoted by CB  and SB  respectively. (The “B” is for Professor Ronald 

Bracewell, late of Electrical Engineering at Stanford University, who played a large part in 
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the modern revival of the Fourier transform, applied it in radio astronomy and image recon-

struction, and wrote an influential text on Fourier transforms in 1978.) Further, we need only 

consider non-negative frequencies, because the values of the Fourier transform at negative 

frequencies give you no extra information about the spectrum of a real-valued function. 

These two policies remove the analysis of imaginary functions and redundant (aka aliased) 

frequencies from the picture, allowing us to focus just on the essentials without stumbling 

over irrelevant symmetries and unnecessary complications. Finally, the eta function   (  is 

the Greek letter “eta”) is useful for taking care of the inevitable factors of two: 

 
( )

1 if 0
2 2

2 if 0.

f
f

f

 


  


 (8) 

  is simply the number of normal (that is, non-edge) frequencies in a context—here, because 

there is only one frequency variable, the only edge frequency is zero and   is either one or 

zero. We usually omit its frequency argument as understood and write “ ” rather than 

“ ( )f ” in formulae. Now we can define the real Fourier transform (or Bracewell transform) 

of a real-valued function g. 

Synthesis: 

    C S
0

( ) ( )cos 2 ( )sin 2g t B f ft B f ft df 


       for t . (9) 

Analysis: 

 
 

 

C

S

( ) 2 ( )cos 2
    for 0

( ) 2 ( )sin 2

B f g t ft dt
f

B f g t ft dt

















 


 





. (10) 

The cosine and sine components CB  and SB  of the real Fourier transform are often combined 

into a complex number, giving a single analysis equation: 

  C S( ) ( ) ( ) 2 ( )exp 2B f B f iB f g t i ft dt 



    ,   0f  . (11) 

The synthesis equation (9) then becomes a dot product: 

  
0

( ) ( ) exp 2g t B f i ft df


  ,   t . (12) 

The dot product expands as in Eq. (9) in rectangular coordinates, while in polar coordinates 

    exp 2 cos 2iAe i ft A ft      ,    ,A  . (13) 

The relationship between g and its (complex-valued) real Fourier transform B can be ex-

pressed by the real Fourier transform operator B:  

   ( )g f B fB ,   or       ( ) ( ) 2 ( )exp 2g f B f g t i ft dt 



  B . (14) 
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For a real-valued function, the relationship between its complex Fourier transform and its real 

Fourier transform is 

 
C real

S img

( ) 2 ( )
    for 0

( ) 2 ( )

B f F f
f

B f F f





 


  

 (15) 

or 

 *( ) 2 ( )B f F f    for 0f   (16) 

where the asterisk indicates the complex conjugate. (The 2  factor may be regarded as “fold-

ing” the negative part of the real number line over onto the positive part, for frequency. The 

complex conjugate is an arbitrary sign change in the frequency in Eq. (3).) 

The synthesis explicitly expresses g as a sum of sinusoids, one at each frequency (see Fig. 1; 

a sinusoid with a positive frequency has an unambiguous period). 

4 Time Series and Discrete Transforms 

The Fourier transform finds the spectrum of a function of continuous time. In climate re-

search, for example, the temperature and solar functions of interest here are indeed functions 

of continuous time. However our measurements of functions is intrinsically discrete—we 

have only measurements taken at intervals, that is, we have only samples of the continuous 

time functions. For example, our information about the temperature and solar functions 

comes in the form of time series.  

4.1 Time Series 
The length-N time series (aka discrete function) g is an ordered set of N data points: 

  [ ], 0,1, , 1g N    . 

  (the Greek letter “tau”) is the time index; it is discrete and dimensionless. We often use 

square brackets rather than parentheses for the argument of g, as a reminder that   is best 

thought of as an index rather than just a normal argument. For example, the time series 

 5, 2, 17, 50  has four data points, which are the values of the discrete function g whose four 

values are [0] 5g  , [1] 2g  , [2] 17g  , and [3] 50g  . 

The connection with functions of continuous time is that the data points of g are samples 

from some continuous-time function h.  

Each data point is associated with or represents a time period, and the time periods butt up 

against one another—their union is the continuous time represented by the time series, and 

they do not intersect. The time of a data point is presumed to be in the middle of the time pe-

riod associated with that data point, and is presumed to be the average value of a continuous 

time function over that time period. The extent of the time series is the total amount of con-

tinuous time represented by the time series, that is, the time from the start of the time period 
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associated with the first data point to the end of the time period associated with the last data 

point. 

In a regular time series the time between data points is always the same, the data points oc-

curring at times 

 
0 0

S

E
t t

N f


   ,   0,1, , 1N   , (17) 

where 0t  is the time associated with the first data point of the time series, E is the extent of 

the time series (from 0 2t d  to 1 2Nt d  , where d is the time between consecutive sam-

ples), and Sf  is the sampling frequency ( 0Sf  ).  

“Sampling” means that  

 0 0[ ]
S

E
g h t h t

N f


 

  
     

   
. (18) 

The time between consecutive samples is the sampling period    

 
1

S

E

f N
 . (19) 

The extent E of the time series is thus  

 1 0

1 1

2 2
N

S S

E t t
f f



   
      
   

. (20) 

Continuing the previous example, h could be the function 2: 1h x x  , with sampling start-

ing at 0 2t    and a sample taken every 3ST   units of time. 

In an irregular time series the time between adjacent data points are not all the same. All we 

can say is that the data points are at times 

 0 1 1, , , Nt t t   

where the times are ordered: i jt t  whenever i j , for  , 0,1, , 1i j N  . The connection 

with functions of continuous time is that the data points of g can be samples from some con-

tinuous-time function h: 

  [ ]g h t  ,   0,1, , 1N   .  

The extent of the time series is still the crucial parameter for connecting the time index with 

the continuous time variable: this length of time should include a little time before the first 

data point and after the last. In the absence of further information, assume the distance be-

tween contiguous data points are about equal and so the extent of the time series is 

 
1 0( )

1
N

N
E t t

N
 


. (21) 
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4.2 Sampled Sinusoids 
Sampled sinusoids or sinusoidal time series are the time series formed by sampling continu-

ous-time sinusoids. The length-N regular sampled sinusoid at frequency f (in cycles per unit 

of t), amplitude A, and phase  , sampled at time 0t  and then regularly over extent E (or at 

sampling frequency Sf ), is the time series  

 0 0cos(2 ), , 0,1, , 1
S

E
A ft t t t N

N f


   

 
       

 
. (22) 

The irregular sampled sinusoid with the same parameters is 

  0 1 1cos(2 ), , , , NA ft t t t t    . 

4.3 Discrete Transforms 
A discrete transform is the mathematical tool for estimating the spectrum of a sampled con-

tinuous time function, or equivalently, of computing the spectrum of a time series. The name 

“discrete” arises because a time series is often called a “discrete function”, a mapping from a 

finite series to the real numbers.  

A discrete transform expresses a time series as a sum of sampled sinusoids. A transform al-

ways comes in two parts, the analysis equation that tells how to calculate the transform coef-

ficients, and the synthesis equation that tells how to form the time series from the coeffi-

cients. It is the synthesis equation of a discrete transform that (literally) expresses a time se-

ries as a sum of sampled sinusoids. 

Crucially, a discrete transform of a time series is also an estimate of the spectrum of the con-

tinuous-time function from which the time series is sampled, that is, of the set of sinusoids 

whose sum approximates the continuous-time function. We say these sinusoids are “in the 

time series” and “in the continuous-time function”. 

4.4 Power 
Analyses in the frequency domain often use power rather than amplitude. Power is a proxy 

for amplitude, because there is an invertible relationship between them and because a sinus-

oid with larger amplitude always has more power (except possibly near the edge frequen-

cies—see below). Power is quicker to compute, the amplitude requiring the same computa-

tion as power but then a square root. In prior days of more limited computing speeds, this ex-

tra square root was a significant factor. Here we use amplitude because computing today is 

fast enough, because a sinusoid is more naturally characterized by its amplitude than by its 

power, and because it is more natural when computing the transfer functions of systems—

whose amplitudes are simply the amplitude of the sinusoid in the output function divided by 

the amplitude of sinusoid in the input function at the same frequency. 

5 Overview of Types of Discrete Transforms 

There are several useful types of discrete transforms for analyzing time series. Each has dif-

ferent applicability, assumptions, strengths and weaknesses. The discrete transforms used 
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here are all “Fourier transforms”, in the sense that they express a time series as sums of co-

sines and sines (or complex exponentials) in close analogy to the Fourier transform of contin-

uous time functions. They differ principally in which frequencies they employ and whether 

they are for regular or irregular time series. 

5.1 DFT 
The standard and conventional discrete transform is the discrete Fourier transform (DFT). 

The DFT expresses a regular time series as a sum of cosines and sines at frequencies that be-

long to a special set, which has the property that the sampled cosines and sines at these fre-

quencies are all orthogonal to one another (that is, they are linearly independent, or cannot be 

expressed as the sums of each other). For a length-N regular time series there are about 2N  

such frequencies, and they depend only on N and the extent or sampling frequency of the 

time series: 

 
1 2 1 1 2 1

0, , , , 0, , , ,
2 2

S S S

N N
f f f

E E E N N N

   
   

   
. (23) 

This reveals an important limitation of the DFT: it is not so good at determining the spectrum 

of a time series that contains sinusoids at frequencies other than the predetermined frequen-

cies. Essentially the DFT assumes that the only sinusoids in the time series are those at the 

predetermined frequencies, then proceeds to find the amplitudes and phases of sinusoids at 

those assumed frequencies that sum exactly to the time series. 

For instance, if the time series is purely sinusoidal at frequency 1.5 E  say, which is half way 

between the second and third of the DFTs predetermined frequencies, then the DFT will con-

struct a sum consisting of a sinusoid at frequency 0 with a small amplitude, a sinusoid at fre-

quency 1 E  with a larger amplitude, a sinusoid at frequency 2 E  with a similar amplitude, 

and sinusoids at 3 E , 4 E , and so on with ever decreasing amplitudes. Although the DFT 

will construct a sum of sinusoids that perfectly adds to the time series, the spectrum implied 

by that sum is misleading—a transform that told us the time series was the sum of a single 

sampled sinusoid at frequency 1.5 E  would often be preferable. 

For a more concrete example, consider the PMOD dataset on total solar irradiance (TSI), the 

dataset of monthly TSI measurements by satellite from December 1978. Up to and including 

November 2012, the dataset has 408 data points and its extent is 34.0 years, so the periods 

corresponding to the frequencies used by its DFT are 34.0, 17.0, 11.33, 8.5, 6.8,…,0.17 years. 

The main solar cycle has a period of about 22 years (the effects of the solar cycles on Earth 

are often due to the square of the Sun’s magnetic field strength, which repeats about every 11 

years but is a squared sinusoid rather than a sinusoid). Unfortunately the DFT is not using a 

frequency close to 22 years—if there were a strong 22 year sinusoid in the TSI, the DFT of 

the PMOD data would show it mainly as a strong 17 year component and a slightly less 

strong 34 year component. Wouldn’t it be good to be able to see directly what the PMOD da-

ta says about a sinusoid at 22 years? 

5.2 MFT and OFT 
It is often important to know as much about the true spectrum of a time series as possible. 

The DFT essentially introduces noise through its assumption of the frequencies of any con-
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tained sinusoids: constraining the frequencies of sinusoids in the spectrum is like adding 

noise because it prevents the signal from being estimated as accurately as possible. To avoid 

that we need to break that assumption, by considering other frequencies. If the time series is 

noisy, with weak signals compared to the noise level, that extra noise introduced by the 

DFT’s assumption on frequencies is significant.  

So, we need to use transforms that introduce as little noise as possible. Therefore we need 

transforms that do well at detecting the frequencies actually present in our time series, and 

express the time series out of sinusoids at such frequencies. 

To that end, we introduce first the manual Fourier transform (MFT), which is basically the 

same as the DFT except that we must manually specify the frequencies of any sinusoids con-

tained in the time series. From the time series and a set of frequencies, the MFT calculates the 

sum of sinusoids at those frequencies that best recreates the time series. Unlike the DFT, the 

frequencies are not restricted—they can be any frequencies at all. Nor do we have to give it 

any particular number of frequencies. However, if we give the MFT unrealistic frequencies or 

too few frequencies to work with, the result will be poor—the sum of the sinusoids will not 

match the time series well. So a measure of how well the sum matches the time series is an 

important part of the MFT results. The MFT allows us to experiment with different frequen-

cies and see how good the fit is. The DFT is a special case of the MFT, where the specified 

frequencies are just those the DFT would use. 

Secondly, we introduce the optimal Fourier transform (OFT). The OFT takes a time series 

and attempts to (a) find the frequencies of any contained sinusoids, then to (b) find the sinus-

oids at those frequencies. Conceptually, it uses a DFT to guess some initial frequencies, then 

uses multi-variable function minimization to choose a set of frequencies that minimize the 

mismatch between the time series and the MFT’s sum of sinusoids at those frequencies. As 

with the MFT, an important part of the OFT result is how well the sum of sampled sinusoids 

it finds matches the time series. 

 

FFT Fast Fourier transform Algorithm for computing 

the DFT more quickly. 

DFT Discrete Fourier transform Predetermined frequen-

cies only. 

MFT Manual Fourier transform Any frequencies, fre-

quencies manually speci-

fied. 

OFT Optimal Fourier transform Any frequencies,  

frequencies found auto-

matically. 

Table 1: Fourier transforms for regular time series, trading off speed for lower noise and greater frequency resolu-

tion. 

A further limitation of the DFT is that it can only be applied to a regular time series. Temper-

ature time series from proxy data in the far past are examples of irregular time series. So we 

Lower 

Noise 

Faster 

to Com-

pute 
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introduce the irregular manual Fourier transform (iMFT) and the irregular optimal Fourier 

transform (iOFT) for dealing with irregular time series. Irregularity generally destroys the 

orthogonality of the sampled sinusoids employed by the DFT, so there is no iDFT. (At least 

formally—informally, just use an MFT with the frequencies that a DFT of a time series with 

the same number of data points and extent would use.) 

The MFT and OFT are both defined and named here. Being fairly obvious ideas, neither are 

likely to be original, but I haven’t been able to find anything too similar searching the Web. I 

expect that both have been developed in part or whole before, but have no knowledge of such 

(except that Tim Channon of Tallbloke’s Talkshop may have developed something similar to 

the OFT with his minimal decomposition analysis). In any case, we need such tools for the 

analysis in the climate research mentioned in the Administration section above. Similarly for 

the irregular versions. 

5.3 FFTs and Computation Speed 
Historically a major theme in Fourier transforms has been computation speed. Transforms are 

computationally intensive. In applications like oil exploration where they were used exten-

sively from the 1960s, when computers were much slower, a little extra noise was happily 

traded off for a lot more speed. However in the last decade computers have become fast 

enough that computation time is not critical for datasets of only a few thousand points, like 

our temperature and solar datasets. The MFT is at least an order of magnitude slower than the 

DFT, and the OFT is several orders of magnitude slower than the MFT. 

A fast Fourier transform (FFT) is an algorithm for computing the DFT. Computing an FFT is 

considerably faster than computing the DFT directly as suggested by the DFT definition—an 

FFT of a length-N time series is ( log )O N N , while computing the DFT naïvely is 2( )O N . 

An FFT computes a DFT with divide and conquer approach, combining a small number of 

DFTs of sub-time-series together. However an FFT requires the factors of N to be small 

prime numbers, and the most common FFT programs require N to be a power of two. This 

restriction sometimes tempts people to arbitrarily change the data in the time series, such as 

by adding data points that are zero or to using “windowing”, in order to apply an FFT. Soft-

ware packages sometimes do this automatically. This raises the noise level in the dataset, 

making any signal harder to find. 

The main temperature and TSI time series are rarely more a few thousand data points each. 

Naïvely computing the DFT of time series of these lengths on a modern computer is quick, 

much less than a second, even using a semi-interpreted language like VBA (the language in 

Microsoft Excel spreadsheets). An FFT is even quicker of course. An MFT usually takes less 

than a second, and an OFT rarely takes more than twenty minutes.  

6 The Discrete Fourier Transform (DFT) 

The discrete Fourier transform (DFT) of a time series is an estimate of its spectrum, which is 

the set of sinusoids whose sum approximates any continuous-time function from which the 

time series is sampled.  
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The DFT assumes that the time series is the sum of sinusoids only at particular pre-

determined frequencies, and can only be applied to regular time series. The function of con-

tinuous time implied by those sinusoids repeats itself with a period equal to the extent of the 

time series. 

6.1 DFT Frequencies 
A DFT expresses a length-N time series g as a weighted sum of length-N sampled sinusoids. 

The argument of the sinusoidal functions used by the DFT is always 

 
2

N


, 0,1, , 1N   , 0,1, , 1N   , (24) 

where   (the Greek letter “nu”) is the frequency index, and is discrete and dimensionless.   

is the frequency counterpart of τ, best thought of as an index rather than a normal variable. 

For example, the length-4 cosine time series are 

  
3

1,cos ,cos ,cos
2 2

 
  

    
    
    

,  0,1,2,3  , 

namely 

        1, 1, 1, 1 , 1,0, 1,0 , 1, 1, 1, 1 , 1,0, 1,0     

(notice the time series for  1   and 3   are the same, an example of the redundancy or 

aliasing in the DFT of real-valued time series, more on that below).  

The connection with the continuous-time function h from which g is sampled is that, for the 

frequency index  , the argument of the sinusoids (namely 2 N ) increases by 2  when 

† increases by N   and thus t increases by E   or SN f . Thus   corresponds to a con-

tinuous-time frequency f that has period E   or sN f , namely the frequency   

 
Sf f

E N

 
  . (25) 

Thus the argument of the sinusoids is 

 

 0

0

2 ( )
2

2 ( )

S

S

fN
t t f

f
f t t

N N






 
 

    . 

6.2 DFTs for Complex-Valued Time Series 
Let the (complex) DFT of g be F, which is thus a complex-valued length-N time series. 

Synthesis: 

 
1

0

2
[ ] [ ]exp

N i
g F

N


 





 
  

 
   for 0,1, , 1N   . (26) 

Analysis:  
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1

1

0

2
[ ] [ ]exp

N i
F N g

N


 






 
  

 
   for 0,1, , 1N   . (27) 

We can calculate F from g (by analysis, or the “forward DFT”) and g from F (by synthesis, or 

the “inverse DFT”), so the information in the time series can be fully represented either as g 

(in which case we say it is in the “time domain”) or as F (in the “frequency domain”). 

6.3 DFTs for Real-Valued Time Series 
The time series of interest here, temperature and solar signals such as total solar irradiance 

(TSI), are real-valued. There are significant simplifications to the DFT that apply when g is 

real-valued. Everything above still applies, because a complex-valued time series is also a 

real-valued time series, but in this section we go into the detail required to perform the neces-

sary computations. 

If g is real-valued then its DFT is still complex-valued, but let us explicitly consider its real 

and imaginary parts: 

 
real img[ ] [ ] [ ]F F i F    , (28) 

where realF  and 
imgF  are real-valued. A little algebra with the complex DFT analysis Eq. (27) 

reveals that when g is real-valued 

 
real real real

img img img

[ ] [ ] [ ]

[ ] [ ] [ ]

F F kN F kN

F F kN F kN

  

  

   

    
 (29) 

for any integer k. Consequently we ignore the values of the DFT at frequency indices outside 

the range  0, 2N , because they are redundant or aliased. The Nyquist frequency, the highest 

frequency in a continuous-time function that can be unambiguously detected by regular sam-

pling at a rate Sf , is 2Sf f , which corresponds to 2N  .  

It is easier to work with Fourier transforms of real-valued functions by focusing on their co-

sine and sine parts, denoted by CB  and SB  respectively and defined as the multipliers of the 

cosine and sine sinusoids in the synthesis, and by focusing on non-negative frequencies 

(thereby removing imaginary numbers and redundant frequencies from the picture). Two use-

ful constants are the maximum cosine frequency index C  (“nu-max-C”) and the maximum 

sine frequency index S  (“nu-max-S”): 

 

2

( 1) 2

= 1.

C

S

C S

N

N

N





 

   

   

 

 (30) 

The eta function is handy for taking care of factors of two: 

 
[ ]

2 if 1,...,  
2 2

1 if 0, 2.

S

N

  
 




  


 (31) 
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  (the Greek letter “eta”) is the number of non-edge (normal) frequencies. Note that 2N   

only occurs if N is even. The edge frequencies (“edge frequency indexes”, if the obvious 

shortcut is not used) are those at the edges of the allowed frequency range, namely 

 0    and, if and only if N is even,  
2

C

N
   . 

The edge frequency behavior is often different from the behavior at non-edge frequencies, so 

it is an important distinction. Often the difference is captured by the eta function. We can 

now define the real DFT (or Bracewell discrete transform, the BFT) B of g: 

Synthesis: 

 
0

2 2
[ ] [ ]cos [ ]sin

C

C Sg B B
N N





 
  



    
     

    
    for 0,1, , 1N   . (32) 

Analysis: 

 

1
1

0

1
1

0

2
[ ] 2 [ ]cos

   for 0,1, ,
2

[ ] 2 [ ]sin

N

C

CN

S

B N g
N

B N g
N










 

 


 











 
     

      




. (33) 

Spectrum of g: 

 
2 2

[ ]cos [ ]sin , 0,1, ,C S CB B
N N

 
   

    
     

    
 (34) 

Amplitude spectrum of g: 

 
2 2amp[ ] [ ] [ ] [ ]C SB B B          for 0,1, , C   (35) 

Phase spectrum of g: 

  phase[ ] pha [ ], [ ]C SB B      for 0,1, , C   (36) 

Relationship between the complex DFT and real DFT: 

 
real

img

[ ] 2 [ ]
   for 0,1, ,

[ ] 2 [ ]

C

C

S

F B

F B





 
 

 





 


  

.  (37) 

Notice that: 

 [ ]CB   is generally non-zero for 0,1, , C  , so there are 1 C  cosine parts. 

 [ ]SB   is generally non-zero for 1,..., S  , so there are S  sine parts. 

 There are N independent real numbers in the DFT that are not redundant or identically 

zero (1 C S N    ), the same number as in the time series g. The number of de-

grees of freedom, or information, is preserved when moving between g and F. 
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 At the edge frequencies, the value of  [ ]SB   is zero by the analysis equation above, 

and by convention it is zero. But because it simply does not appear in the synthesis 

equation, it could be anything at all. This is noteworthy because this convention can 

sometimes create a discontinuity in an otherwise smoothly varying estimate of [ ]SB   

as   varies, in contexts where   can be non-integral. 

 The real DFT expresses the time series as a sum of sinusoids at the frequencies 

 
1 1

0,1, , ,   or  0, ,..., ,   or  0, ,...,C C
C S Sf f f f

E E N N

 
      

(see the synthesis equation)., Only these pre-determined frequencies are used by the 

DFT; they are determined just by N and either E or Sf . These frequencies are special: 

they are uniquely the frequencies from zero to the Nyquist frequency (inclusive) that 

collectively have N cosines and sines (that aren’t identically zero) that are orthogonal 

under time summation (next section), or equivalently, that are linearly independent 

when sampled at the same times as the continuous time function h was sampled. 

However, using only these frequencies forces the DFT to represent sinusoids at other 

frequencies as sums of these frequencies, which can be misleading at times.        

6.4 Sinusoidal Orthogonality for Regular Time Series 
In order to prove that the real DFT is invertible (next section), we need to know about the or-

thogonality of the sinusoids used by the DFT. For , {0,1, , }C   , 

 
1

0

cos 2 ( ) 1, ,2 2
cos cos 2

cos(2 )cos(2 ) 0, 2.

N
S

N I
N N N



 


     
 

  








     
      

    
  (38) 

Special cases: 

 

1

0

1

0

1

1

0

2 2
cos cos 2

2 2
cos sin 0

2 2
sin sin 2 .

S

N

N

N

N I
N N

N N

N I I
N N



 






   


 

 

 















  



   
   

   

   
   

   

   
   

   







  

Proof: First note that  

 
1 1 1

0, , 2 ,

0 0 0

2 2 2
cos cos( ) cos sin( ) sin cos( )

N N N

N NN I
N N N


  

  
   

  

   

  

     
        

     
    

To see this, consider a unit circle on an x-y plane. Let M equal N divided by the greatest 

common divisor of N and  . Draw M equally spaced points around the circle, including a 

point at the intersection of the circle with the positive x axis. The angles 2 N  are the an-

gles the points make with the origin and the positive x axis; cosines are projections onto the x 

axis, and sines are projections onto the y axis. By symmetry the sums of cosines and sines are 

zero, except when 1M  . Now to the statement to be proved: 
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1 1

0 0

0 2

1
2

1 1
2 2

1 2 ( ) 1 2 ( )
LHS cos ( ) cos ( )

2 2

cos( ) cos( )
2 2

co( ) 1, ,

co( ) co( ) 0, 2

RHS.

N N

N

S

N N
N N

I I I

N I
N

 

     

 

       
   

   

   

    

 

 

    



    
        

   

      

  
 

   



 

 

6.5 DFT Invertibility 
Consider a sinusoidal time series g with amplitude A and phase   at any of the frequencies 

used by the real DFT: 

 

 

2
[ ] cos

2 2
cos( )cos sin( )sin , 0,1, , .C

g A
N

A A
N N


 

 
   

 
  

 
   

     
   

 (39)

 

Comparison with the synthesis equation shows that its cosine and sine parts are 

 
[ ] cos( )

[ ] sin( )

C

S

B A I

B A I

 

 

 

 





 


 
   for 0,1, , C  . (40) 

Two related quantities that are natural to compute are the cosine and sine averages of g: 

 

1
1

avg

0

1
1

avg

0

2
[ ] [ ]cos

2
[ ] [ ]cos

N

N

C N g
N

S N g
N






 


 











 
   

 


       




   for 0,1, , C  . (41) 

The relationships between the parts and averages, such that the DFT synthesis equation is 

correct (and the DFT is thus invertible), are found by substituting for g and expanding, then 

applying the special cases of sinusoidal orthogonality (see last section):  

 

1
1

avg

0

1
1

avg 1

0

2
[ ] [ ]cos cos( )2 2 [ ]

2
[ ] [ ]sin sin( )2 2 [ ]

S

N

C

N

S

C N g A I B
N

S N g A I I B
N

 

 


 

   



   


   


  






  

  



 
    

 


        




0,1, , C  . (42) 

These give the formulae for the cosine and sine parts in the DFT analysis equations. This 

proves the DFT analysis and synthesis formulae above are correct, and that the DFT is invert-

ible, for real-valued time series. 

6.6 Some Observations about the DFT  
There is an infinity of possible sums of sinusoidal time series that add to a given time series. 

The DFT expresses the time series as the weighted sum of all the mutually linearly independ-

ent sinusoidal time series whose frequencies range from 0 to the Nyquist frequency, of which 

there are exactly N. This sum is unique.  
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The DFT expresses a time series as a sum of orthogonal sinusoidal time series, which has the 

advantage that the DFT is invertible—we can compute the time series from its DFT and vice 

versa, and move between time and frequency domains without loss of information. In appli-

cations where we just want to estimate the spectral sinusoids and their frequencies as well as 

possible, invertibility is not valuable or even relevant—such as in the climate research appli-

cation mentioned in the Administration section above. Moreover, that orthogonality comes at 

a price. 

One disadvantage is that the DFT pre-determines which frequencies it assumes are in g, and 

these frequencies are determined merely from the data length N and the extent E (or equiva-

lently, the sampling frequency Sf ). So if g happens to be a sum of sampled sinusoids at fre-

quencies other than those predetermined ones, the DFT will construct g from frequencies or 

sinusoids that are not in fact present in g—and while it will do a reasonable job, using nearby 

frequencies as one might expect, it will not be correct. 

Another disadvantage is that all of the sinusoids used by the DFT have an integral number of 

periods in the length of the time series, so the continuous-time function made from those si-

nusoids repeats itself infinitely, with a period equal to the length of the time series. In many 

applications this does not matter, but it is worth bearing in mind because often it is obvious 

that the continuous-time function is not in fact periodic and does not repeat forever with a 

period equal to the length of data that happened to be collected.  

7 The Regular Suprod Functions 

To develop discrete versions of the Fourier transform that can express a time series using si-

nusoids at frequencies other than the pre-determined ones employed by the DFT, we need to 

let the frequency index   be non-integral instead of just integral. With the DFT we consid-

ered only the frequency indices 0,1, , C , where 2C N     ; now we consider all real fre-

quency indices, that is, all the real numbers in  0, 2N . 

This means that the sampled sinusoids used to synthesize the time series will no longer nec-

essarily be orthogonal under time summation. We therefore need to explore what happens 

with non-orthogonal sinusoids. This leads to the four special functions that are the subject of 

this section, the “regular suprod functions”. (The name “suprod”, reminiscent of “sums of 

products”, is coined here. The “regular” in the name is because they are only used to analyze 

regular time series; we later use a slight variation to analyze irregular time series.). 

When the frequency index   is integral the values of the suprods are zero, a half, or one, so 

they do not appear to be explicitly present—though of course they are present, just that their 

effect is fully accounted for by applying the sinusoidal orthogonality relationships. But when 

  is allowed to be non-integral the suprods are explicitly required, in all their messy detail. 

The suprod functions generalize the sinusoidal orthogonality relationships. They are the scal-

ing factors that connect the cosine and sine sums with the cosine and sine parts. 

The four regular suprod functions for any positive integer N and real numbers   and   are 

defined by 
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 

 

   

 

1
1

0

1
1

0

1
1

0

1
1

0

2 2
cc , cos cos

2 2
cs , cos sin

2 2
sc , sin cos cs ,

2 2
ss , sin sin .

N

N

N

N

N

N N

N

N

N
N N

N
N N

N
N N

N
N N









 
 

 
 

 
   

 
 





















   
    

   

   
    

   

   
    

   

   
    

   









 (43) 

In our use, N is the number of data points in the time series under consideration, while   and 

  are frequency indices. To avoid redundant (aliased) frequencies, we are only interested in 

frequency indices in  0, 2N : 

 

   

   

   

   

cc , cc ,

cs , cs ,

sc , sc ,

ss , ss ,

N N

N N

N N

N N

jN kN

jN kN

jN kN

jN kN

   

   

   

   

  

  

  

  

 (44) 

for any integers j and k, while 

 

   

   

   

   

   

   

   

   

cc , cc ,

cc , cc ,

cs , cs ,

cs , cs ,

sc , sc ,

sc , sc ,

ss , ss ,

ss , ss , .

N N

N N

N N

N N

N N

N N

N N

N N

   

   

   

   

   

   

   

   

  

 

  

   

  

  

  

  

 (45) 

For integral values of   and  , the values of the regular suprod functions were calculated 

when we looked at the sinusoidal orthogonality for regular time series: 

 

1

cc ( , ) 2

cs ( , ) 0

sc ( , ) 0

ss ( , ) 2
S

N

N

N

N

I

I I



 



   

 

 

 

 







  









 (46) 

Otherwise, the values of the sums of products are best viewed by numerical calculation: 
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Figure 2: The suprod functions when the two frequency arguments are the same, showing the scaling factors for the 

cosine and sine parts.  

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0.00 0.10 0.20 0.30 0.40 0.50

Normalized Frequency Index (nu/N and mu/N)

Suprod Functions, Both Frequency Arguments the Same (N=8)

cc

cs

ss

Determinant (Δ = cc * ss - sc * cs)
sciencespeak.com

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

0.00 0.10 0.20 0.30 0.40 0.50

Normalized Frequency Index (nu/N and mu/N)

Suprod Functions, Both Frequency Arguments the Same (N=100)

cc

cs

ss

Determinant (Δ = cc * ss - sc * cs)
sciencespeak.com



7. The Regular Suprod Functions 20 

 

 

 

Figure 3: The suprod functions when the frequency arguments are different, showing the price for non-orthogonality. 
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2 ( ) 2 2
cos cos(2 )cos sin(2 )sin

2 ( ) 2 2
sin sin(2 )cos cos(2 )sin

N

N N N

N

N N N

   
 

   
 

     
      

     

     
      

     

 (47) 

and, for brevity, let 

 

2 2
CC cos cos cc cos(2 )cos(2 )

2 2
CS cos sin cs cos(2 )sin(2 )

2 2
SC sin cos sc sin(2 )cos(2 )

2 2
SS sin sin ss sin(2 )sin(2 )

N N

N N

N N

N N

 
 

 
 

 
 

 
 

   
    

   

   
    

   

   
    

   

   
    

   
.

 (48) 

Then 

 

   even

1 1

 even

1 1

cc , 1 cos( )cos( )

2 2 2 ( ) 2 ( )
cos cos cos cos

1 cos( )cos( ) CC cc CC cs CS sc SC ss SS .

C C

C C

N N

N

N I

N N

N N N N

I

 

 

 

 

   

     

 

 

 

 

        
        

       

           
 

 

 

 

Similarly, for all four regular suprod functions: 

  

 

 

 

 even

1 1

 even

1 1

 even

1

cc , 1 cos( )cos( ) CC cc CC cs CS sc SC ss SS .

cs , cos( )sin( ) CS cs CC cc CS ss SC sc SS

sc , sin( )cos( ) SC sc CC ss CS cc

C C

C C

C

N N

N N

N N

N I

N I

N I

 

 

 

 





   

   

   

 

 



           
 

          
 

      

 

 



 

1

 even

1 1

SC cs SS

ss , sin( )sin( ) SS ss CC sc CS cs SC cc SS .

C

C C

N NN I





 

 

   



 

   
 

          
 



 

 (49) 

This cuts computation by as much as a half if cosine and sine evaluations are much more ex-

pensive than individual multiplications and additions, because the hat-quantities are inde-

pendent of τ. Extending further: 

 

1
2

1
2

2 ( ) 2 2
cos cos( )cos sin( )sin

2 ( ) 2 2
sin sin( )cos cos( )sin

N

N N N

N

N N N

   
 

   
 

     
     

    

     
     

    

 

and so on ( 4 , 8 ,N N    etc). 
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More decisively from the point of view of fast computation, the regular suprods are amenable 

to a divide and conquer strategy, like the FFT does for the DFT. Let p be any integral divisor 

of N greater than or equal to two (in practice p will be a prime). The key observation is   

 

 
1

1 1

0

1

0

2 ( ) 2 ( )
cc , cos cos

2 2
cos cos .

N p

N p p p

N p

p p p

N N p N p

p

N N N





     
 

 









   
    

   

   
    

   





 

(50)

 

For brevity, let 

 

 

 

 

 

1 1

1 1

1 1

1 1

2 2
cc cos cos CC cc ,

2 2
cs cos sin CS cs ,

2 2
sc sin cos SC sc ,

2 2
ss sin sin SS ss , .

i p N p p p

i p N p p p

i p N p p p

i p N p p p

i i

p p

i i

p p

i i

p p

i i

p p

   
 

   
 

   
 

   
 

   
    

   

   
    

   

   
    

   

   
    

   

 

Then 

 

 
1

0

( 1) 11

0

11

0 0

1

0

2 2
cc , cos cos

2 2
cos cos

2 ( ) 2 ( )
cos cos

2 2 2 2
cos cos

N

N

i N pp

i iN p

N pp

i

N p

i

N
N N

N N

iN p iN p

N N

i i

p N p N









 
 

 

   

     





 

 



 





   
    

   

   
    

   

    
    

   

   
     

   



 

 


1

0

11

0 0

2 2 2 2
cos cos sin sin

2 2 2 2
cos cos sin sin

CC cc CC cs CS sc SC ss SS

p

N pp

i

i i i ip p p p p

i i

p N p N

i i

p N p N

N N

p p



     

     







 

        
        

        
  

        
         

        

    



 

1

1

.
p

i






 

 

Similarly for the other three suprods, so the suprod extension equations are: 
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 

 

 

 

1

1

1

1

1

1

1

1

cc , CC cc CC cs CS sc SC ss SS

cs , CS cs CC cc CS ss SC sc SS

sc , SC sc CC ss CS cc SC cs SS

ss , SS ss CC sc CS cs SC cc SS

p

i i i iN p p p p p

i

p

i i i iN p p p p p

i

p

i i i iN p p p p p

i

p

i i i iN p p p p p

i

p

p

p

p

 

 

 

 

















     
 

     
 

     
 

     
 







 .

 (51) 

Thus the regular suprod function for  ,   of length N can be quickly constructed from the 

regular suprod function for  1 1,
p p
   of length N p . If N can be factored into small prime 

factors, this tactic reduces its computation from ( )O N  to (log )O N . 

8 Estimating Contained Sinusoids 

Once we move away from using the pre-determined frequencies of the DFT, we need to solve 

the following problem: what are the sampled sinusoids in a given time series at a given set of 

frequencies, assuming that those are the only frequencies present in the time series?  

That is, assuming that the time series is equal to a sum of sampled sinusoids with frequencies 

drawn only from the given set of frequencies, what are the amplitude and phase of the sinus-

oid at each of the frequencies in the given set? This problem is called “estimating the sampled 

sinusoids contained in a time series” here.  

The problem has a unique solution, involving suprods. The solution is exact if the assumption 

is correct (but becomes increasingly wrong as the number and amplitudes of sinusoids at oth-

er frequencies in the time series increase). It is this solution that makes the MFT and OFT 

possible. When the given set of frequencies is the set of frequencies used by the DFT, the an-

swer is essentially the DFT—so the following solution may be considered to be a generaliza-

tion of the DFT. 

8.1 One Sinusoid  
Suppose we have time series g containing one sampled sinusoid. Let g be a length-N time se-

ries with amplitude A and phase   at some given frequency index  0, 2N , where   

may be integral or non-integral: 

  
2 2 2

[ ] cos cos( )cos sin( )sing A A A
N N N

  
   

     
        

     
, 0,1, 1N   . (52) 

The cosine and sine parts of g are defined as the multipliers of the purely cosine and sine 

sample sinusoids in the synthesis of g, so, trivially, they are 

 
 0, 2

( ) cos( )

( ) sin( )

C

S N

B A I

B A I I

 

  

 

 



 

 


 
   for  0, 2N  . (53) 
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So how do we find these from g? The obvious (and perhaps the only reasonable) starting 

quantities are the cosine and sine averages of g, namely 

 

1
1

avg

0

1
1

avg

0

2
( ) [ ]cos

2
( ) [ ]sin

N

N

C N g
N

S N g
N






 


 











 
   

 


       




    for  0, 2N  . (54) 

Substituting for g and expanding reveals they are linear combinations of the suprod functions: 

 
avg

avg

( ) cos( )cc ( , ) sin( )cs ( , )

( ) cos( )sc ( , ) sin( )ss ( , )

N N

N N

C A A

S A A

      

      

  


  
    for  0, 2N  . (55) 

In particular when   , and recognizing the cosine and sine parts: 

 
avg

avg

( ) ( )cc ( , ) ( )cs ( , )

( ) ( )sc ( , ) ( )ss ( , ).

C N S N

C N S N

C B B

S B B

      

      

 

 
 (56) 

Solving these two equations (Cramer’s rule), 

 

avg avg

avg avg

ss ( , ) ( ) cs ( , ) ( )
( )

cc ( , ) ( ) sc ( , ) ( )
( )

N N

C

N N

S

C S
B

S C
B

     


     












   

where 

  
2

cc ( , )ss ( , ) sc ( , )cs ( , )

cc ( , )ss ( , ) cs ( , ).

N N N N

N N N

       

     

  

 
  

These are the exact solutions for the cosine and sine parts at  ; at other frequency indices 

they are zero, by our original constraint that g contains only a single sampled sinusoid, at fre-

quency index  . Note however that the cosine and sine averages at frequencies other than   

are generally non-zero, close to zero at frequencies far from   but larger at frequencies clos-

er to .  It is worth stressing that these are exact solutions only when there truly is only one 

sinusoid in the time series; if there are other sinusoids in the time series then the solution is an 

estimate but not quite correct, and the closer the other sinusoids are in frequency the less ac-

curate is the above solution. 

If   is an edge frequency then  

  sin 2 0N   for 0,1, 1N    

 cc ( , ) 1N     and cs ( , ) sc ( , ) ss ( , ) 0N N N         

 avg ( ) 0S    

 ( ) 0SB    by convention (it is irrelevant to the synthesis equation). 

 The system of two linear equation reduces to just one equation: 

 avg ( ) ( )CC B  . 
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To test this solution, consider the approximations. When   is not near an edge frequency: 

  

 1 1 1
2 2 2

1
2

avg

avg

,

cc ( , ) ss ( , )

cs ( , ) sc ( , ) 0
1 4

( ) 2 ( )

( ) 2 ( ).

N N

N N

C

S

N

B C

B S



   
   

 

 

 




  

When   is close to an edge frequency: 

 

1
2

avg

0,

cc ( , ) 1
cs ( , ) sc ( , ) ss ( , ) 0

0
( ) ( )

( ) 0.

N

N N N

C

S

N

B C

B


 
     

 




 

In both approximations the results agree with the DFT of g for integral values of  . 

8.2 Two Sinusoids 
The next simplest case is a length-N time series g that is the sum of two sampled sinusoids, 

the first with amplitude 1A  and phase 1  at frequency  1 0, 2N   and the second with am-

plitude 2A  and phase 2  at frequency  2 0, 2N  : 

 1 2
1 1 2 2

2 2
[ ] cos cosg A A

N N

  
  

   
      

   
, for 0,1, 1N   . (57) 

The cosine and sine parts of g are thus 

 
 

1 2

1 2

1 1 2 2

1 1 2 2 0, 2

( ) cos( ) cos( )

( ) sin( ) sin( )

C

S N

B A I A I

B A I A I I

   

    

  

  

 

  

  


     

   for  0, 2N  . (58) 

Substituting our expression for g above into the cosine and sine averages of g, 

 

avg 1 1 1 1 1 1

2 2 2 2 2 2

avg 1 1 1 1 1 1

2 2 2 2 2 2

( ) cos( )cc ( , ) sin( )cs ( , )

cos( )cc ( , ) sin( )cs ( , )

( ) cos( )sc ( , ) sin( )ss ( , )

cos( )sc ( , ) sin( )ss ( , )

N N

N N

N N

N N

C A A

A A

S A A

A A

      

     

      

     

 

 

 

 

 

for  0, 2N  . Setting 1   then 2   and recognizing the cosine and sine parts, 

 

avg 1 1 1 1 1 1 1 2 1 2 2 1 2

avg 1 1 1 1 1 1 1 2 1 2 2 1 2

avg 2 1 2 1 1 2 1 2

( ) ( )cc ( , ) ( )cs ( , ) ( )cc ( , ) ( )cs ( , )

( ) ( )sc ( , ) ( )ss ( , ) ( )sc ( , ) ( )ss ( , )

( ) ( )cc ( , ) ( )cs ( , ) (

C N S N C N S N

C N S N C N S N

C N S N C

C B B B B

S B B B B

C B B B

            

            

       

   

   

   2 2 2 2 2

avg 2 1 2 1 1 2 1 2 2 2 2 2 2

)cc ( , ) ( )cs ( , )

( ) ( )sc ( , ) ( )ss ( , ) ( )sc ( , ) ( )ss ( , ).

N S N

C N S N C N S N

B

S B B B B

    

            



   

 

This set of linear equations can always be solved for the cosine and sine parts that are not 

identically zero, thereby solving the problem:  
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 If 
1  and 

2  are not edge frequencies then there are four linearly independent equa-

tions for the four cosine and sine parts. 

 If 1  is an edge frequency and 2  is not, then 1( )SB   is identically zero and 

  1sin 2 0N    for 0,1, 1N   . 

Thus 1 1cc ( , ) 1N    , the second equation becomes 
avg 1( ) 0S   , and the remaining 

three equations are 

 

avg 1 1 2 1 2 2 1 2

avg 2 1 2 1 2 2 2 2 2 2

avg 2 1 2 1 2 2 2 2 2 2

( ) ( ) ( )cc ( , ) ( )cs ( , )

( ) ( )cc ( , ) ( )cc ( , ) ( )cs ( , )

( ) ( )sc ( , ) ( )sc ( , ) ( )ss ( , ).

C C N S N

C N C N S N

C N C N S N

C B B B

C B B B

S B B B

       

         

         

  

  

  

 

This is a set of three linearly-independent linear equations, and can be solved for the 

remaining three cosine and sine parts: 1( )CB  , 2( )CB  , and 2( )SB  . 

 If both 1  and 2  are edge frequencies then 1( )SB   and 2( )SB   are identically zero, 

the second and fourth equations become 
avg 1( ) 0S    and 

avg 2( ) 0S   , and the re-

maining two equations become 

 
avg 1 1 2 1 2

avg 2 1 2 1 2

( ) ( ) ( )cc ( , )

( ) ( )cc ( , ) ( ).

C C N

C N C

C B B

C B B

    

    

 

 
 

This is a set of two linearly-independent linear equations, and can be solved for the 

remaining two cosine parts: 1( )CB   and 2( )CB  . 

A useful approximation arises if 1  and 2  are not close to each other: their joint suprod 

values (those with arguments 1 2( , )   or 2 1( , )  ) are close to zero, so the four equations 

become simply 

 

avg 1 1 1 1 1 1 1

avg 1 1 1 1 1 1 1

avg 2 2 2 2 2 2 2

avg 2 2 2 2 2 2 2

( ) ( )cc ( , ) ( )cs ( , )

( ) ( )sc ( , ) ( )ss ( , )

( ) ( )cc ( , ) ( )cs ( , )

( ) ( )sc ( , ) ( )ss ( , ) ,

C N S N

C N S N

C N S N

C N S N

C B B

S B B

C B B

S B B

      

      

      

      









 

which are just two independent instances of the one-sinusoid case. 

8.3 Many Sinusoids 
Suppose the length-N time series g is the sum of m sampled sinusoids,  1,2,m , with 

amplitude iA  and phase i  at frequency  0, 2i N   for 1, ,i m : 

 
1

2
[ ] cos

m
i

i i

i

g A
N


 



 
  

 
 , for 0,1, 1N   . (59) 

The cosine and sine parts of g are thus 
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1
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1
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( ) sin( )

k

k

m

C k k

k

m

S k k N
k

B A I

B A I I

 

  

 

 





 



 




       




   for  0, 2N  . (60) 

Substituting our expression for g above into the cosine and sine averages of g, 

          

 

 

avg

1

avg

1

( ) cos( )cc ( , ) sin( )cs ( , )

( ) cos( )sc ( , ) sin( )ss ( , )

m

i i N i i i N i

i

m

i i N i i i N i

i

C A A

S A A

      

      






  



 





  for  0, 2N  . (61)  

Setting 
1   then 2   and so on to 

m  , and recognizing the cosine and sine parts, 

we get the 2m  linear equations 

         

avg

1

avg

1

( ) ( )cc ( , ) ( )cs ( , )

( ) ( )sc ( , ) ( )ss ( , )

m

j C j N j i S j N j i

i

m

j C j N j i S j N j i

i

C B B

S B B

      

      






     


    




  for  1, ,j m . (62) 

This set of 2m  linear equations can always be solved for the 2m  cosine and sine parts. If 

frequency 
j  is an edge frequency then 

avg ( ) 0jS    and that equation is removed from the 

set, and so on as in the case with two sinusoids. 

Solving these equations numerically with LU decomposition is stable and quick. Frequency 

indices very close to an edge frequency are treated as edge frequencies, otherwise roundoff 

error in computing the suprods dominates the solution for the sine part at that frequency 

(whose absolute value blows up, often to an absurdly large number). A set of one or two hun-

dred of these can be solved in about a second using VBA in an Excel spreadsheet, so it is 

quite practical to estimate hundreds of contained sinusoids at once.  

9 The Manual Fourier Transform (MFT) 

The manual Fourier transform (MFT) is similar to the discrete Fourier transform (DFT): both 

compute a spectrum of a regular time series, expressing the time series as a sum of sampled 

sinusoids. The MFT is a more general case of the DFT: in an MFT the user specifies the fre-

quencies of the sampled sinusoids in the spectrum, while with a DFT the frequencies are pre-

determined. 

Because the sampled sinusoids at the specified frequencies are generally not orthogonal under 

time summation, the MFT is generally not invertible: the sinusoids at the specified frequen-

cies that best sum to the time series do not necessarily sum exactly to the time series. Thus, 

with the MFT, we cannot talk about a time series as being either “in the time domain” or “in 

the frequency domain” as we can with a DFT—because information may be lost if we use the 

MFT to move from the time domain to the frequency domain. 
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Consequently, a measure of how well the MFT synthesizes the time series from its spectrum 

of sinusoids is an important part of the MFT results. The measure we use here is the residue 

of the error time series, that is, of the original time series less the sum of the sinusoids found 

by the MFT (or inverse transform). The residue of a length-N time series g is defined by 

 
1

0

residue [ ]
N

g







 . (63) 

Note that we have used absolute values rather than squares, which is analytically awkward 

but computationally more appropriate. We define the fractional error of an MFT of g as the 

residue of the error divided by the residue of g: 

 
  1residue of ( )

fractional error
residue of 

g MFT MFT g

g


 . (64) 

If the fractional error exceeds a few percent, something is wrong with the MFT computation 

or the specified frequencies are inappropriate, and the MFT spectrum should not be used. We 

usually express the fractional error as the error percentage, which is 100 times the fractional 

error. The notion of a goodness-of-fit parameter like the error percentage is absent from the 

DFT because the DFT is invertible: its fractional error is always zero. 

9.1 MFT Frequencies 
Suppose we assume that the sinusoids in our length-N time series g are at the m frequencies  

 1 2, , , mf f f , 

where the frequencies are non-negative and ordered: 0if  , and 
i jf f whenever i j , for

 , 1,2, ,i j m . These frequencies are our specified frequencies, from which the MFT will 

attempt to synthesize g. They are continuous-time frequencies. The corresponding frequency 

indices are 

 1 2, , , m   ,  i if E  , 

where E is the extent of g. The term “frequency index” is carried over from the DFT, even 

though the frequency index   is now a real variable rather than integral (which is rather in-

compatible with the notion of an index). And the actual index of the MFT frequencies, i and j 

above, go unnamed—but are free to be 1-indexed because they do not appear in the argu-

ments of the trigonometric functions (as   does for the DFT). Oh well. 

The minimum positive frequency that is definitely satisfactory is the frequency whose period 

is the extent E of g, namely  

 min

1
f

E
 . 

Frequencies below this have less than a full cycle in the time series, and while they may be 

present in g, are harder and less reliable to estimate. We have to use them if g trends slowly, 

but they are not as desirable as sinusoids with at least one cycle in view. 
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The maximum meaningful frequency is half the average sampling frequency, which is the 

Nyquist frequency of the time series: 

 
max

2

N
f

E
 . (65) 

A sinusoid at a frequency above the Nyquist frequency has identical samples to some sinus-

oid with a non-negative frequency below the limit—they are indistinguishable, given the 

sampling regime. The sinusoid above the Nyquist frequency is an “alias” of the one below, 

and it is redundant for the purposes of synthesizing g. 

For comparison, the DFT expresses g as a sum of sampled sinusoids at the 1C   frequencies 

 
1

 0, ,..., C

E E


,   where 2C N     . (66) 

The conversions between frequency f and time t, and frequency index   and time index   

are 

 fE  ,  
N

t
E

 ,  and ft
N


 . (67) 

9.2 MFTs for Real-Valued Time Series 
Let g be real-valued length-N time series. Let the specified frequencies be 1 2, , , mf f f , so 

the frequency indices are 1 2, , , m    where i if E   for 1, ,i m , where E is the extent of 

g. Let the cosine and sine parts of the MFT of g be CB  and SB  respectively, each a real-

valued function on the range of valid frequency indices  0, 2N , defined (as per the DFT) as 

the multipliers of the cosine and sine sinusoids in the synthesis.  

Synthesis: 

 
1

2 2
[ ] ( )cos ( )sin

m
i i

C i S i

i

g B B
N N

   
  



    
     

    
    for 0,1, , 1N   . (68) 

Analysis: 

CB  and SB  as determined by estimating the m contained sinusoids. 

See Appendix 8. This involves solving a set of 2m linear equations. 

Spectrum of g: 

 
2 2

( )cos ( )sin , 1, ,i i
C i S iB B i m

N N

   
 

    
     

    
 (69) 

Amplitude spectrum of g: 

 
 2 2

1( ) ( ) , ,
amp( ) ( )

0 otherwise

C i S i i mB B
B

    
 

  
  



 (70) 

Phase spectrum of g: 
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  
   1pha ( ), ( ) , ,

phase( ) pha ( ), ( )
0 otherwise

C i S i i m

C S

B B
B B

    
  

 
  


 (71)  

9.3 Frequency Bracketing and the MFT 
The frequency specification of the MFT can be “bracketed”, in which case the specified fre-

quencies are partitioned into “brackets”. The MFT described to this point is a single-bracket 

MFT, with all the frequencies in the same bracket and all on an equal footing.  

The multi-bracket MFT is performed as follows: 

 Perform a single-bracket MFT on the time series using just the frequencies in the first 

bracket. Subtract the sum of the sinusoids thus found from the time series, to form a 

remaining time series.  

 Perform a single-bracket MFT on this remaining time series using just the frequencies 

in the second bracket. Subtract the sum of the sinusoids thus found from the remain-

ing time series, to form a new remaining time series.  

 And so on, until a single-bracket MFT has been performed once for each bracket. 

The spectrum found by the multi-bracket MFT is the union of all the sets of sinusoids found 

by the single-bracket MFTs. 

The purpose of bracketing is to be able to specify that some frequencies are more important, 

or sinusoids at those frequencies expected to have much greater amplitudes, than frequencies 

in subsequent brackets. If all the frequencies were fitted at once in a single-bracket MFT, the 

guiding assumption would be that each frequency is on an equal basis, equally likely to have 

a larger-amplitude sinusoid. However if you expect some main sinusoids at some frequencies 

and some minor sinusoids at other frequencies, then you should use bracketing to guide the 

MFT towards the solution you are expecting.   

10 The Optimal Fourier Transform (OFT) 

The optimal Fourier transform (OFT) is similar to the discrete Fourier transform (DFT) and 

manual Fourier transform (MFT): each computes a spectrum of a regular time series, express-

ing the time series as a sum of sampled sinusoids. The OFT is optimal in the sense that it 

finds the sampled sinusoids in a time series, including their frequencies, automatically and 

accurately (usually, hopefully, depending on the implementation!).  

 The OFT is more general than the DFT: an OFT discovers which frequencies are ap-

propriate, while a DFT is constrained to using predetermined frequencies.  

 The OFT is more than the MFT: the OFT discovers its own frequencies, then executes 

an MFT using those frequencies.  

The OFT is useful when trying to best estimate the sinusoids in a time series, and in consider-

ing frequencies other than those used by the DFT. 

Because the sampled sinusoids at the frequencies discovered by the OFT are generally not 

orthogonal under time summation, the OFT is generally not invertible: the sinusoids in the 
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time series at the discovered frequencies do not necessarily sum exactly to the time series. 

Thus, with the OFT as with the MFT, we cannot talk about a time series as being either “in 

the time domain” or “in the frequency domain” as we can with a DFT—because information 

is often lost if we use the OFT to move from the time domain to the frequency domain.  

As with the MFT, a measure of how well the OFT synthesizes the time series from its spec-

trum of sinusoids is an important part of the OFT results. As per the MFT, we use the frac-

tional error based on residues of absolute values of time series, the residue of the pointwise 

errors as a fraction of the original time series.  

In the absence of pointwise noise (noise that strikes a data point or just the data point and its 

neighbors independently of what happens at other data points), the OFT usually fits any 

vaguely smooth time series with far fewer sinusoids than a DFT—with fractional errors of 

just a few parts per million. Pointwise noise is obviously not amenable to being represented 

as the sum of a few sampled sinusoids, so when pointwise noise is present the fractional error 

is much higher. The DFT always has zero fractional error, but it handles the pointwise noise 

in the time series by modeling it using many high frequency sinusoids—thus transporting the 

noise to the frequency domain. Depending on your application, it may be better to use an 

OFT that incurs a higher fractional error but leaves much of the noise behind in the time do-

main.   

If the fractional error of an OFT exceeds a few percent, check its error time series (the differ-

ence between the original time series and the time series synthesized from its OFT). If it con-

tains just pointwise noise, then the OFT is good. If the error appears to contain structure or 

signal, then something has gone wrong with the OFT. If pointwise noise is low the OFT often 

scores fractional errors of less than one percent, in which case the OFT is very close to being 

invertible. 

10.1 OFT Frequencies 
The OFT uses only non-negative frequencies up to the Nyquist frequency (where aliasing and 

redundancy set in), that is, frequencies in  0, 2N E  and frequency indices in  0, 2N , for a 

length-N extent-E time series. 

10.2 OFTs for Real-Valued Time Series 
Let g be a real-valued length-N extent-E time series.  

Let the OFT discover m frequencies in g: there is a sinusoid with non-zero amplitude in the 

OFT’s synthesis of g at each of the frequencies 1 2, , , mf f f  or frequency indices 

1 2, , , m    (where i if E   for 1, ,i m ).  

Let the cosine and sine parts of the OFT of g be CB  and SB  respectively, each a real-valued 

function on the range of valid frequency indices  0, 2N , defined (as per the DFT and MFT) 

as the multipliers of the cosine and sine sinusoids in the synthesis.  

Synthesis: 

 
1

2 2
[ ] ( )cos ( )sin

m
i i

C i S i

i

g B B
N N

   
  



    
     

    
    for 0,1, , 1N   . (72) 
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Analysis: 

 CB  and SB  as determined by the implementation, see the next section. 

Spectrum of g: 

 
2 2

( )cos ( )sin , 1, ,i i
C i S iB B i m

N N

   
 

    
     

    
 (73) 

Amplitude spectrum of g: 

 
 2 2

1( ) ( ) , ,
amp( ) ( )

0 otherwise

C i S i i mB B
B
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 

  
  



  (74) 

Phase spectrum of g: 

  
   1pha ( ), ( ) , ,

phase( ) pha ( ), ( )
0 otherwise

C i S i i m

C S

B B
B B

    
  

 
  


 (75) 

10.3 Implementation 
The basic question arises: how do we know which frequencies are present in the time series? 

The cosine and sine averages are perhaps our only obvious tools for peering into the spectral 

structure of the time series. Unfortunately the most obvious and direct approach, using local 

maxima in the amplitude of the cosine and sine averages as frequency is varied, is of such 

low resolution as to be almost useless. Consider a time series with m frequencies:  

 
1

2
[ ] cos

m
i
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The cosine average is 

  avg
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i i N i i i N i
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

  ,    0, 2N  . (77) 

But the suprod function cc has a broad peak of width in the order of half a unit of frequency 

index. Thus frequencies less than about two thirds of a unit of frequency index cannot be dis-

tinguished by a local maximum in the cosine average; they combine into a single maximum. 

Also, all the suprod functions go up and down a few times as the frequency index distance 

increases, so contributions from sinusoids more distant in frequency may be increasing or de-

creasing at any frequency—leading to many local maxima in the cosine average that are not 

near any frequencies present in the time series. Finally, due to a combination of both factors, 

peaks in the amplitude of the cosine averages are often up to half a unit of frequency index 

from the frequency index of the corresponding sinusoid in the time series. 

The core concept of the OFT is to minimize the m-function, a function which: 

 Takes a set of frequency indices as an argument. 

 Estimates the sampled sinusoids in the time series using those frequencies. 
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 Returns the residue in the error time series, the original time series less the sum of the 

sampled sinusoids just found. 

The exact algorithm of an OFT is implementation dependent, being affected by issues such as 

the maximum number of sinusoids considered at once at various stages, the tolerances and 

number of iterations in the minimizations, the minimization algorithm used, the method for 

calculating residue, or the width of the frequency-index bands around the edge frequencies 

within which a frequency index is considered an edge frequency. The OFT algorithm is thus 

not well-defined (in contrast, the DFT is well defined and the MFT almost is).  

Here we perform an OFT in three parts: 

1. Reconnaissance – Roughly estimate an initial set of frequencies. 

2. Main – Compute the frequencies of any contained sinusoids precisely. 

3. MFT – Perform an MFT using the precise frequencies. 

The reconnaissance part begins with a DFT of the original time series. The frequencies of the 

local peaks in the DFT amplitude spectrum become the first set of guessed frequencies. The 

m-function is minimized, starting with this first set, using a multivariable function minimiza-

tion algorithm that can vary each of the frequencies in the guess. The cosine and sine parts of 

the contained sinusoids at the precise frequencies thus discovered are estimated, and these are 

subtracted from the original time series to form a remaining time series. This is repeated a 

few times, each loop starting with a DFT of the working time series to guess some initial fre-

quencies, minimizing the m-function to get some precise frequencies, estimating the cosine 

and sine parts for these precise frequencies, then subtracting these sinusoids from the working 

time series. Lastly, all the precise frequencies thus found are put in a single set, near-

duplicates are consolidated, and the half a dozen or so frequencies whose sinusoids had the 

highest amplitudes form the frequencies found by the reconnaissance stage.  

The main part starts with the reconnaissance stage frequencies as a first guess, and minimizes 

the m-function (as in the reconnaissance stage) to form precise estimates of contained fre-

quencies. Any similar frequencies are consolidated, because it may happen that two or more 

frequencies converge towards the same frequency during the minimization. The minimization 

is repeated if there were any consolidations. The cosine and sine parts for these precise fre-

quencies are estimated, recorded, and subtracted off the original time series to form the work-

ing time series. Repeat this procedure until the residue of the working time series is suffi-

ciently low, with the initial guess after the first loop coming from local peaks in the DFT am-

plitudes. Lastly, take all the frequencies thus found, sort them by amplitude, and form them 

into brackets based on clumping amplitudes by orders of magnitude.  

The MFT part simply performs an MFT on the original time series, using the bracketed fre-

quency specification of the main stage. The spectrum thus computed is the OFT spectrum. 

The local peaks in DFT amplitude will often not discover contained sinusoids that are rela-

tively close in frequency, so the reconnaissance part is simply aimed at uncovering such fre-

quencies. 
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Finally, the result of the process described so far is sometimes not finished, because the error 

time series (the difference between original time series and the time series synthesized from 

its OFT) has obvious structure, more than just pointwise noise. So another stage of OFT is 

applied, with just a minimal number of sinusoids (say 15), to capture this residual structure. 

This is repeated until the error is apparently just pointwise noise. To determine if the error 

time series is just pointwise noise, it would be best to apply the Ljung-Box test. However we 

use a quick and dirty method— just to do another stage of OFT and see if the spectrum is suf-

ficiently flat. If it is not flat then the stage would be required in any case, to determine the 

residual sinusoids, so in effect it is quick. If the spectrum of the speculative OFT stage is flat, 

we didn’t need those sinusoids and we throw them away and quit. 

Computing times and machine speeds limit the number of frequencies considered at various 

stages. In Climate.xlsm, in VBA in an Excel spreadsheet, the reconnaissance stage considers 

five frequencies at once, the main stage ten frequencies at once ( 10m  ), and the MFT 150 

frequencies at once. As more frequencies are considered at once, the estimation of contained 

sinusoids improves. While simple and fairly ubiquitous, VBA is not notably fast or efficient. 

In a faster computing environment we could use a much higher m. Whereas DFTs of the cli-

mate datasets compute in less than a second, the OFTs take several minutes, even up to two 

hours, so we batched and cached them. 

The OFT orders its spectral sinusoids by amplitude, the sinusoids with the largest amplitudes 

first (they are presumably the more important sinusoids). The sum of the sinusoids in the 

spectrum estimated by the OFT will more closely approximate the time series as it uses more 

sinusoids. If there is pointwise noise in the time series and the signal is larger than the 

pointwise noise, at some number of sinusoids the additional smaller sinusoids will just be rec-

reating pointwise noise rather than signal and the OFT’s spectrum can be usefully truncated 

at that number. See the climate paper mentioned in the Administration section at the top for 

an example of applying this principle to the OFT of the HadCrut4 temperature dataset—the 

first 30 or so sinusoids found by the OFT appear to be mainly signal, but after that appear to 

be mainly representing noise. 

11 Examples of the OFT 

Example 1: One sinusoid. Consider a time series sampled from the continuous-time function  

 
2 2

( ) 9cos 20
208 360

g t t
  

  
 

,    t , (78) 

which is sinusoidal with period 208 years, amplitude 9, and phase 20°. Let the time series be 

regular, with 300 samples over 2,000 years starting at time 0. The time series is thus sinusoi-

dal, but as it happens it is not at one of the predetermined frequencies of the DFT (the nearest 

of which are at periods 9/2000 =222.22 years and 10/2000 = 200.00 years). The DFT, which 

took 1/20
th

 of a second to compute in Climate.xlsm, estimates g as 
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 (79)  

The spectrum estimated by the DFT contains 150 non-zero sinusoids, at all 150 of the pre-

determined frequencies; Eq. (79) shows only the six with the closest frequencies to the true 

frequency, which also tend to be the ones with the largest amplitudes. The OFT, which took a 

third of a second to compute, estimated g as  

 
OFT

2 2
( ) 9cos 20.00

208.00 360
g t t
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. (80) 

The OFT locked onto the correct frequency and estimated the signal correctly.    □ 

Example 2: Four sinusoids. Let the continuous-time function  
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 (81) 

be sampled 300 times at regular intervals over 2,000 years starting at 0.  

 

Figure 4: The time series sampled from the function in Eq. (81), containing four sinusoids. 
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Figure 5: The DFT and OFT of the time series in Fig. 4 (amplitudes only). 

The DFT, which took a twentieth of a second to compute, finds a spectrum consisting of 150 

non-zero sinusoids, with the largest-amplitude ones near the frequencies in g. The OFT, 

which took 1.3 seconds to compute, finds the four frequencies in g exactly, then correctly es-

timates the amplitudes and phases of the four sinusoids in g.    □ 

Example 3: Ten sinusoids. Our implementation of the OFT in Climate.xlsm can find up to ten 

sinusoids at once, so consider a continuous-time function which is the sum of ten sinusoids:  
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 (82) 

Let our time series be g sampled 300 times at regular intervals over 2,000 years starting at 0.  
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Figure 6: The time series sampled from the function in Eq. (82), containing ten sinusoids. 

 

Figure 7: The DFT and OFT of the time series in Fig. 6 (amplitudes only). 

As in the last two examples, the DFT took a twentieth of a second to compute and finds a 

spectrum consisting of 150 non-zero sinusoids, with the largest-amplitude ones near the fre-

quencies in g. The OFT took 40 seconds to compute, and the spectrum it found was:  
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Figure 8: Estimate of the spectrum of the time series in Fig. 6, by the OFT in Climate.xlsm.  

The OFT locked on to the ten frequencies simultaneously and correctly estimated the fre-

quencies, amplitudes and phases of the ten sinusoids in g.    □ 

Example 4: Two sinusoids close in frequency, resolvable. Our implementation of the OFT in 

Climate.xlsm can distinguish frequencies that are more than about the Nyquist frequency im-

posed by the sampling. Let the continuous-time function  
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 (83) 

be sampled 300 times at regular intervals over 2,000 years starting at 0. The time between 

samples is 2000 / 300 or 6.667 years, so the Nyquist period is twice that or 13.334 years. The 

difference in periods between our two sinusoids in Eq. (83) is 303 – 289 or 14 years, just 

above the Nyquist period. (ht: Greg Goodman pointed out the Nyquist connection.)  

 

Figure 9: The time series sampled from the function in Eq. (83), where the two sinusoids are a slightly further apart 

in frequency than the Nyquist frequency. Resolvable by the OFT into two sinusoids. 

OFT

Detected 

frequencies

Detected 

periods

f 1 / f amp phase

cycles / yr years U degrees

0.00165 606.00 11.0000 45.00

0.00248 404.00 10.0000 0.00

0.00495 202.00 9.0000 20.00

0.00654 153.00 9.0000 150.00

0.00330 303.00 9.0000 0.00

0.00990 101.00 8.0000 15.00

0.01333 75.00 8.0000 300.00

0.04348 23.00 8.0000 215.00

0.07143 14.00 7.0000 40.00

0.02041 49.00 4.0000 340.00

AP of time series

-20

-15

-10

-5

0

5

10

15

20

0 500 1000 1500 2000

Time (Years)

Time Series Containing TwoSinusoids with Frequencies About 5% Apart

sciencespeak.com



11. Examples of the OFT 39 

 

 

Figure 10: Estimate of the spectrum of the time series in Fig. 9, by the OFT in Climate.xlsm. 

The OFT in Climate.xlsm took two seconds to correctly find the two sinusoids and their am-

plitudes and phases.    □ 

Example 5: Two sinusoids close in frequency, not resolvable. Our implementation of the 

OFT in Climate.xlsm fails to distinguish frequencies that differ by about the Nyquist frequen-

cy imposed by the sampling. Let the continuous-time function  
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 (84) 

be sampled 300 times at regular intervals over 2,000 years starting at 0. The time between 

samples is 2000 / 300 or 6.667 years, so the Nyquist period is twice that or 13.334 years. The 

difference in periods between our two sinusoids in Eq. (84) is 303 – 291 or 12 years, just be-

low the Nyquist period. 

 

Figure 11: The time series sampled from the function in Eq. (84), where the two sinusoids are a slightly closer in fre-

quency than the Nyquist frequency. Not resolvable by the OFT into two sinusoids. 
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Figure 12: The first 10 sinusoids of the estimate of the spectrum of the time series in Fig. 11, by the OFT in Cli-

mate.xlsm. The OFT lists the sinusoids by amplitude. 

The OFT in Climate.xlsm took 90 seconds but failed to lock onto and find the two frequen-

cies. Instead it estimated the spectrum as a single sinusoid, with frequency and phase about 

midway between the two actual sinusoids and amplitude roughly equal to the sum of the ac-

tual amplitudes, plus 122 other sinusoids mostly with tiny amplitudes.    □ 

12 The Irregular MFT (iMFT) and the Irregular OFT (iOFT) 

Some time series, such as temperature datasets going back beyond the last few hundred years, 

are irregular—meaning that the times between adjacent data points are not all the same. The 

DFT, MFT, and OFT are only for regular time series. The DFT relies on orthogonal sampled 

sinusoids which in turn rely on regular spacing of data points in time, so is inherently regular. 

But the MFT and OFT can be adapted to irregular time series. 

12.1 Irregular Time Series 
Consider a length-N irregular time series g, whose data points are at times   

 0 1 1, , , Nt t t   

where the times are ordered: i jt t  whenever i j , for  , 0,1, , 1i j N  . The extent E of 

g is best estimated, in the absence of further information, by 
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
. (85) 

In the framework here, a regular time series is a special case of an irregular time series. 

We wish to reuse the software and formulae for regular time series with as little alteration as 

possible, so we wish to use frequency indices rather than frequencies when analyzing irregu-

lar time series. With regular time series, the time summations vary a time index   from 0 to 

1N  , and the arguments of the cosine and sine functions are 2 N . We wish to keep eve-

rything except the   in those arguments, and we need to replace   by something containing 

the information about the irregular times 0 1 1, , , Nt t t  . We therefore need a new time variable 
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t  in the arguments, indexed by the time index   and varying over the range [0, )N  like the 

time index   with the regular time series. The irregular times in fact vary over 
0 0[ , )t t E , a 

fact we now use to gives us the required scaling and offset. 

Let the normalized-time discrete variable be defined as 
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Thus 
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Because the extent is just N times the average distances between adjacent data points, the dis-

tance between k points, 
k j jt t  , is equal on average to kE N . So if the distances between 

adjacent points are all about equal to the average such distance, then 

 
0( )k k

N
t t t k

E
   ,   for 0,1, 1k N  . (87) 

Thus: 

 The normalized-time between adjacent data points is one, on average. 

 The extent of the time series is N units of normalized-time. 

 

For notational brevity, let the time vector be 

 0 1 1, , , Nt t t t . 

The normalized time vector is  
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In the special case that the time series is regular, its time vector is 
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and its normalized time vector is therefore  

 0 1 1, , , 0,1, , 1Nt t t N
     t . 

 



12. The Irregular MFT (iMFT) and the Irregular OFT (iOFT) 42 

 

Therefore, to adapt the regular formula and software to irregular time series: 

 Change the argument of the cosine and sine functions from 2 N  to 2 t N  . 

 Everything else is the same. 

The regular time series then become a special case, in which 

 t   . 

12.2 The Irregular Suprod Functions  
In section 6 we introduced the regular suprod functions and explored some of their properties. 

Now we need suprods for irregular time series. 

The irregular suprod functions for any positive integer N, time vector 
0 1 1, , , Nt t t t , and 

real numbers   and  , are defined by 

 

 

 

   

 

1
1

,

0

1
1

,

0

1
1

, ,

0

1

,

2 2
icc , cos cos

2 2
ics , cos sin

2 2
isc , sin cos ics ,

2 2
iss , sin sin

N

N

N

N

N

N N

N

t t
N

N N

t t
N

N N

t t
N

N N

t
N

N

 



 



 





 
 

 
 

 
   

 
 


















    
    

   

    
    

   

    
    

   

 
  

 







t

t

t t

t

1

0

.
N t

N









 
 
 



 (89) 

The irregular suprods have to be computed numerically, because all of the relationships de-

veloped for regular suprods fail for irregular suprods. In particular the divide and conquer 

strategy for fast suprods fails, so the irregular suprods apparently have to be computed by the 

naïve and slow algorithm (that is, by directly following the defining formulae above).  

12.3 Estimating Contained Sinusoids in an Irregular Time Series 
In section 7 we estimated the contained sinusoids in a regular time series. Now we do the 

same for an irregular time series.  

Suppose an irregular length-N extent-E time series g with time vector t contains one sinusoid 

at frequency index  0, 2N :   
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The cosine and sine parts of g are clearly the same as if g was regular:  
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But the cosine and sine averages are different, due to the sampling at different times: 



12. The Irregular MFT (iMFT) and the Irregular OFT (iOFT) 43 

 

 

1
1
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0

1
1

avg

0

2
( ) [ ]cos

2
( ) [ ]sin

N

N

t
C N g

N

t
S N g

N










 


 











  
   

 


       




    for  0, 2N  . (92) 

Substituting for g and expanding reveals that they are now the same linear combinations but 

of the irregular suprod functions instead of the suprod functions: 

 
avg , ,

avg , ,

( ) cos( ) icc ( , ) sin( ) ics ( , )

( ) cos( ) isc ( , ) sin( ) iss ( , )

N N

N N

C A A

S A A

      

      

  


  

t t

t t

    for  0, 2N  . (93) 

In particular when   , and recognizing the cosine and sine parts: 

 
avg , ,

avg , ,

( ) ( ) icc ( , ) ( ) ics ( , )

( ) ( ) isc ( , ) ( ) iss ( , ).

C N S N

C N S N

C B B

S B B

      

      

 

 

t t

t t

 (94) 

This is the same set of equations to solve for the cosine and sine parts of g as in the case 

when g was regular, except that irregular suprods replace the regular suprods. 

Similarly for when g contains multiple sinusoids: the cosine and sine averages are the same 

linear combinations as in the regular case, and the set of equations in the cosine and sine parts 

is the same as in the regular case, except we use irregular suprods instead of regular suprods. 

12.4 The iMFT and iOFT 
The iMFT and iOFT are the same as the MFT and OFT, except: 

 Replace regular suprods with irregular suprods (which use the time vector of the ir-

regular time series). 

 To compute cosine and sine averages, change the argument of the cosine and sine 

functions from 2 N  to 2 t N  . 

Appendix A Special Functions 

The following functions are used here but are not standard. 

A.1 Indicator function 
From the set of all propositions to 0 and 1: 

 proposition

1 the proposition is true

0 the proposition is false.
I


 


 (95) 

For example, for some integer N, 

  is even

8 if  is even
5 3

5 if  is odd.
N

N
I

N


  


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A.2 Phase function 
Arctan needs extending to be able to compute polar-coordinate angles, for which we use the 

phase function pha (pronounced “far”). It gives the angle on a plane, in radians in  0,2 , 

that the point ( , )x y  makes with the x-axis: 

  1

0pha( , ) tan mod 2xx y y x I 


    ,    ,x y . (96) 

If ( , )x y  is in the first quadrant, the phase function simplifies to 

  1pha( , ) tanx y y x . 

For example, pha(1,0) 0 , pha(1, 3) 3 , pha(0,1) 2 , and pha( 1,0) .   

A similar function is the two-argument arctangent function atan2, but its range is ( , ]  . 

 

https://en.wikipedia.org/wiki/Atan2
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