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Abstract

This documenipresents the frequendomain knowledgesed inthe notch-delay solar the-

ry [Evans, The Notcibelay Solar Hypothesis, 201@inear inwvariant systems, sinusoids, the

Fourier transformsimple low pass, delay and notch filtetsansfer functions and step-r

sponses, et®©nly information necessary to the theory is presented heralminates in d-

veloping the formulae for theange ofpossible step responsesor t he system fro
tot al solar irradiance to the Earthos surf ac
notch filter in the frequency domain.
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1 Introduction

Analysisof systems using sinusoids svaf fundamental importance in the technological pr
gress othe last two centuries.

Around 1800 a young onamed doseph FounlsuNdedacblaechaf 6 s ar
mathematics called Fourier analysis which functionsof time are expressed as sumsief s
nusoidalwaves(he was studying heat propagation at the tilA@plysis usingsinusoidsal-

lowed us to understand linear invariant syst¢iSs) for the first time LISs are extremely
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common in nature, and the key to describing and unlocking their behavior is Foatier an

sis) because sinusoids are rather special to LMB& important application éfourier anaf-

sis was in making sense of disparate phenoméka c o mpasses and making
twitch with sparkswhich culminated inl86linMa x we | | 6 s e qrequatonstha, t he
completelydescribe electromagnetisiubsequentlyregineers and scientists could get down

to exploiting electromagnetism, and ween had 150 years and counting of new wonders

based on electricity and magnetism.

Linear invariant systemd4.[Ss) are simpleandubiquitous systemthat have a crucial prope

tyd if the input to aLIS is a sinusoidt a given frequengyhenits output isalsoa sinusoid at

the same frequency, though possibly with a different amplitude and phase. The universe is
chock full of systems that are good approximationkl&s, especially in anything to do with
electricity and magnetism. Many of thecsesses iphysics and engineerirfgom 1800are

based orFourieranalysi® an awful high proportion of modern technologpw | d n 6 t e X i
without thisbranch ofmathematicsSome of thebasicideas of Fourier analysis have seeped

into our technological consciousness, even of thetaedmologically minded, ssome of

what followsin this introductionwill be familiar to nearlyall readers

To get to the notcldelay solar theory from theatasets of solar irradianead surface te-
perature data requires some understanding of systenikesinelquency domain, which the
purpose of this document.

A fisystend is anything with aninput and an outputvhich is too broad a definition to be of
much useAdd the conditions of linearity and invariance however, both fairly weak and
common conditions, and thdS is specific enough téorm a useful constructioof wide ap-
plicability. These two conditions single out one class of functions, the sidasas special to
theanalysisof LISs.

Consider for exampliree spaceor space witmot much in iflike the atmospherdt is a LIS

for functions whose values are electric and magnetid fialues. We are all accustomed to

the ramifications of this, because we are familiar with the concepts of visible light, radio
waves, UV, infrared, xays, microwaves, and sodrall of which are electromagnetic sswu

oids at different frequencieg§Ve implicitly analyze the fluctuations in the electric andgma

netic fields around us into sinusoids at different frequencies, at least conceptually, because it
is useful to think of them this way:

 Sinusoidsat di fferent frequenci eBorakamplélighti nt er
waves have no effect on radiowadeshi ni ng a t or c hntedere a r ac
with its reception of a radio station

9 Sinusoidsd o n 6t change frequencies as they go
many other things that are LISSor example, radio waves are still radio waves when
they pass through air or walls and-so on,
raysYou dondt e v eyourmdoasyouwalk withét into a liilding

The electric and magnetic field®uld be analyzed into square wavesiwwave® of some
other shap&@ b u t it wasuséfu, heécause ihe e s u lwavieavgpuldialways be
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hoppingb et ween Ad re@qmuehocweger y o u-sinubomal wavdsle r i z e
and they would be foreventeracting with each other in a myriad of wagisiusoidalwaves

aremuch simpler and more usefdlhe electric and magnetic fields would still be the same

no matter how you think about them, of course, but using waves other than sinusoids would
be a diy and confusing way ohnalyang their fluctuations.

We are accustomed to the idea of the electromagnetic spectrum. At the highest frequencies
are gamma rays andrays, and asve descendhrough the frequencies we come to UVj-vis

ble light, infrared,microwaves, and finally radio waves. The lowest frequency radio waves in
use today are around 100,000 cycles per second. But what if you keep going towere
frequencies? The same rules about LISs apply, but now we can talk about waves at one cycle
persecond, or one cycle per year, or one cycle per 11 years or per thousand years. These last
few frequencies are the sinusoids of interest for the climate. The Sun emits these frequencies,
which we perceive as gradual fluctuations in solar radiadiodfechnically they are part of

the electromagnetic spectruoo. Jwst as infar e d  d interactwith visible light sinusoids

at onecycle per year do nahteractcycles at 11 cycles per year in free space, and so on.

T h e ythe saengohenomenanatremati@lly, just on a different scale.

In the notchdelay solar theory we turn this branch of mathematics onto the relatioreship b
tween total solar irradiance (TSI) and the surface temperatures on Earth.

Consider the syem whose input is TSI and whose outputhe surface temperaturé is
presumably invariant, because its properties are unlikely to change much with time. For small
perturbations of temperature, such as those over the last few thousand yeprssiirisably
linea® nearly all systems are linetor sufficiently small perturbations, and the climate-sy

tem is widely assumed to be linear for such perturbat®oshe system would appear to be a
LIS, so Fourier methods are applicable.

The onlymeasuredlataof intereston the Sun that goes back radhan a few decades is the

count of sunspots. Bsunspot record, whicktarts in1610 AD, has been converted to TSI

using models based on the observed relationship between sunspot numbers @rat &l

lastfew decadegwe have only been able to maesthe tiny change in TSIs from 1978, with
satellites; before that t.I5@ifwE&elookimgdoracsaldrl ed
link to global warming on a climatic time scale, the sunspot record TSI reconstruction

from the sunspotss about the only source of informatiare haveon what the Sun has been

doing.

This documentstarts with systems and deduces frequency domain beh&woising on
notch, delay, and low pass filters.

A low pass filter mimics the thermal momentum of thenakte systemsimply smoothing out
the impact of changes in heating and cooling from theiS@tcordance with a simple and
obvious differential equation. Basicalljhhange in incomingenergy must accumulate over
time to change the temperature.

A notch fiter mimics the new and remarkable empirical observation that the frequencies of
the sunspot cycle are greatly attenuated in the terrestrial surface temperature. A notch filter
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with the observed amplitudeat the various frequenciean be either causal apncasual,

which opens up an intriguing possibility. If neausal, the response of the filfgecedests
corresponding stimulus, which is impossible, so the notch filter would have to be ascomp
nied by a delay in order for it to be physically realizéblehich suggests the possibility of a
delay of the order of the notch period. The notch period, corresponding to the average length
of the sunspot cycle, isll years. Or the notch filter could bausal. In any case, a delay of

~11 years between changes in TSI and changes in global surface temperature héas been o
served several times in disparate works,dpgarently mostly interpreted by the researchers

as delays in the propagation of heat arolr@dEarth(though the magnitude of the warmings

is much greater than the direct warming effect of the changes in TSI)

The notchdelayhypothesigproposes hithertounknown forcefrom the Sun, called force X,

that warms the Earth by affecting its alb8desow much sunlight is reflected back out to
space by the c¢clouds and ice etc. without hea
but the inspiration for the cartoons argays, which were so namdxy Wilhelm Rontgen
when their cause and nature wemknown.) Force X iowerwhen the Sun flips the polar

ty of its magnetic field, which it does evenll years & part ofthe full solar cycle (~22
years) The times when force X is lowest exactly coincide with the times when the TSI peaks
during the slar cycle. The observed notchihghe prominent peaks in TSI anet found in

t he Earthos s ur foaschecausesampaening fromiT8l peaks,che watming
from force X is in a trough. They cancel, roughly. The two are in exact synchronicitigthr

t he i rr egul;thenotshond cauld ofiycbg caliseddy a solar phenomenon.

Thefull solar cycle (called the Hale cycle)+82 years on average, which tends to get-ove

looked because most solar phenomena are proportional sgjtlaceof th e Sunds magne
field (which repeats about everll yeary The proposed delagf ~11 year§ partly do-

served, partly suggested by the causality of notch filters, partly deduced by fitting the TSI and
temperature dafabetween changes in TSI and changef®ine X suggests that force X lags

half a full solar cycle (180 behind the TSI. The TSI is the bulk radiation coming from the

Sun, but the composition of that radiation, particularly in UV and extreme UV, changes

the cycle. The notcldelayhypothess proposs that TSI serves as a leading indicator of force

X and thus changes in Eartho6és surface tempei
in force X by about one sunspot cycle (half a full solar cycle).

This delay of~11 years could explainpf instance, why global temperatures kept rising until
about 1998 or so after the TSI stopped rising around 1986. Indeed, without the delaf, it is di
ficult to see how changes in the TSI could be the major influence on surface temperatures.

A note on lousdeeping:The special functionk (indicator) sgn(signum), stepeta,and pha
(phase) areisedsporadicallyin thisdocumenttheyare déined in Appendix A

2 SystemDefinitions

A system is anything with an input and an outpathdescribable by function while alin-
ear invariant system (LIS) is a system that is both linear and invariant
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2.1 Systan

A systemis an entity with an input function and an output functibonly functions é timet

are of interestthena system is anything whose input is a function of time and whose output
is a function of timeThus, a system maps a function to a fiorc(where as a function maps

a value to a value). If the input function to a sys®mag,,, then the output function ised

noted byS{ g} -

, ] System )
input function > output function

Oin S Jour = S{gm}

Figure 1: A system.

2.2 Linear System
A system isscalanf and only if

S{ad = a$ § €y
for all input functiongy and all real numbera A system isuperpositioningf and only if

S{a+a} =§ ¢ €49 )

for all input functionsg, and g,. A system isinearif and only if it is both scalar and supe
positioning, that is, if and only if

S{ag+ bg} =a$ ¢ +F P 3

for all input functionsg, and g, and for all real numbersandb. Thus, f the input to a lie-

ar system is linear combination ahput functions thesystemeffectivelyhandles each fun

tion in the combination separately, as if the other functions in the combination wereerot pr
sentor had no effect

2.3 Invariant System
A system ignvariantif and only if

Sat=gw Y §t q(t/) [ g.(t H (4)

for all input functionsg,, and real numberd . Thus a systemis time-invariant if time
shifting the input causes the output to be tshéted by the samamount. More simply, a
system is timenvariant if its properties do not change with time.

Here we have used the notation that a funajagnan al so beé—>dg@n,otwhli dly
means thag) maps the argumento the valueg(t). By the way, i is common in system ali

gramsandnequati ons descri bitwg agstuerdcer soboodi &nd
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a funcgion wki dh | eaves tldoleng asiif thg system isapa e q u a't
ping values when it is really mapping functions.

2.4 Linear Invariant System (§

A linear invariant syster(LIS) is a system that is both linear and invariant. Thus a LISais sc
lar, superpositioning, and does not change its properties. Asld&o called dilter, espe-
cially when its role is seen as shaping the spectrum of a signal passing through the system.

3 Impulse Response

The impulseresponse of gystemis its output func i on when the imput fu
pul se o, thatisfzer;meveryiviene excephen itsargumenis zero,andwith one unit

of input (that is the area under the input function is ané)s the basic theoretical tool that

allows the output oA LIS to be calculated from its input.

3.1 Impulse

An impulseis defined aghedelta functionl, a speci al Afunctiyno who
where except at zero, but which when present in an integral behaves as if the area under it is
onewhen its argumensizero

A.o0amdt= "/ edt =’ o {(Y dt 40) )

for anyrealvaluedfunction g defined on the real numbei®. (There is no actual function
that can fulfill this last condition, but we pretend there is, perhaps thinkingsthe limit of

a series of impulséke functions appropriate to the given situation. This awkwardness has
more to do with overcoming shoaimings with integration than becausés physically une-

al. In nearlyany practical physical context, a series of impdilse functions is readily @
cernible.)

The shifted delta function— d(t- J is zero for all values of except/ , so integration

with it Apicks outd: the value of a function

A.odt- jdt = {0 @ Yt (it ) dt/ g ¥ ©)

for any functiong defined on the real numbers. Significantlye tdelta function allows us to
express any function as a linear combinatiommfulses:

o

9(d =0 _9(ua(t -y du. (7)

3.2 Impulse Response
Theimpulse responsh of a systenSis the output function when the input is a deltacfun
tion:

h=5{d = > ¢}}. (8)
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3.3 Calculating the Output of &1S
Let the input to a LISSbe any functiong,, . Thenthe output ofScan be expressed as a linear
combination of shifted impulse responses:

S{tH QN(I)}= S{ Hﬁu g (da( t- Y d}J
= ﬁnglN (U)S{ t— a(t -l)} du (9)
= ﬁngw(u)[tH h(t -U)] dy

where theequalities are respectiweby Eq. (7), linearity, and invariance. Thus the value of
the output function dtis a linear combination of impulse responses:

o

Gour® =1 On(WHt -0 du = F(t ¥y (10)

where we have made the substitutiont -U to get the final expressiofhe integrals in this
equation are called cwolution integrals, and,; is said to be theonvolutionof g,, andh,
written asg,, * h:

Your = 9n *h, or gOUT(t) :{gw ﬂ(t)1 t R. (11

4 Sinusoids

Sinusoids play a special role with LIS¢erewe first define them, thewe derive that special
relationship.Apart from sone obvious uses in trigopnometry, the significance of sinusoids is
limited to their special role in analyzing LISs.

4.1 Definition
A function is asinusoid(or is sinusoida) in some real variableif it is a cosine or sine fgn
tionin t, of the form

t— Acog pft- J, ti R.
The three parameters of the sinusoiditste

1 Frequencyf, in cycles per unit of. Theperiodof the sinusoid i/ f.
1 AmplitudeA.
1 Phasef (in radians).
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Figure 2: The sinusoid int at frequencyf, with amplitude A and phasel.
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4.2 Polar and Rectangular Coordinates
The sinusoidt > Acos( 2 ft- J is said to be expressed imlar coordinatesbecause it is
expressed in terms of an amplitudand phase . By basic trigonometry

Acoy pft- J =Acos( fcos 2fth A sin( )&n 2ft).

The cosine and sine coefficients, or rectangular coordinatessairthsoid areAcos( ) and
Asin(f) respectively.

The sinusoidt - B, cog( 2 ft) + B; sir{ 24ft) is said to be expressed fiectangular cooiie
nates because it is expressed in terms of a cosine coeffilerand a sine coefficienB;.
By basic trigonometry and the phase functidpgendixA.5),

B cos( 1)+ By sif{ 2¢t) <[E B cof 2t phak, B).
The amplitude and phase, or polar coordinatdsthe sinusoid are thus/Bé+Bs2 and
pha@. ,B; ) respectively.

4.3 Sinusoidsandall LISs

Consider an arbitrary LIS whose input and outputs are functionst,ohnd whose impulse
response i$. Let theinput functionbe an arbitrary sinusoid in time at frequencyf,, with
amplitudeA and phaseg , namely

t> gy (t) = Acog( P fit - §. (12)

By Eq.(10), the value of the output function ta
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Gour () =} _Gu(t WY dv
=f.Acod 21, ¢ v) Fh@)dv
=R Agcos( Dt - J co§ 2fgv) sif 2fp )} g 2f)og A O
= Acos( P it - Jj_co§ 2 gv) h ¢ Hv

+Asin(20 1.t - Jfj_sin( 2 fv) h{)dv. 9
The integrals in the lasixpressionnamely
C= ﬁ cos( P fov) h(v)dv ”
S= ﬁnsin(ZU f,v) h(v) dv,
evaluate to numbers that are independenhtsaftheyare constantsThus
Jour(t) = ACcos( P fit - § ASsir{ 2 gt }. (15)

Convertthis sinusoido polar coordinates by letting

C=acosqg axlC? & (16

S=asin g gphaC,S)
Hence

Jour(t) = Aacos( gcog 2 fat - ) FA sd ) sip 2t p}
:Aacos( 2/t f-l])q (17)

From this we can draw severatableconclusions

1. The output function is also a sinusoid it frequencyf,.

2. The amplitude of the output sinusoid is equal to the amplitude of the input sinusoid
multiplied by a .

3. The phase of the output sinusoid is equal to the phase of the input sinusgid plus

4. a and g are independent of the amplitude and phase of the input sinusoid,yso the
apply toall input sinusoids at frequencfy,.

5. The behavior of th&lS for input sinusoids of frequendycan be characterized fust
two real numbers, an amplitude multiplierand a phase addemd

If the input to any LIS is a sinusoid at frequenty thenits output is alse a sinusoid at &-

quency f, (thus,the sinusoidsit frequencyf, are eigenfunctions of all linear invariantssy

tems).The output sinusoid may have a different amplitude and phase to the input sinusoid,

but it is guaranteed to be a sinusoid with frequerigyFurthermore, a given LIS always
fitransfers a sinusoid at a given frequency from the infauthe output with theameampi-
tudeamplificaion andsamephase shif hence t he Atransfer . functio
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In general, if the input to a LIS is a nemusoidal functior(that remainsfinite as its arg-

ment becomes infinitethen the otput is not guaranteed to be any particular function. For
example, if the input function to an arbitrary LIS is a square wave then the output function
tends to be something like a square wave but with the corners roundesbdffis no longer

a square wa The sinusoids, however, are special.

By the linearity of a LIS, if the input function of a LIS is a sum of sinusoids, each at & diffe
ent frequency, then the output function, bby. (17), is alsoa sum of sinusoids at the same
frequencies, where the relationship between the output and input sinusaidsgvenfre-
guency is determined by just the amplitwadaplificationand phase shift of the LIS at that
frequency. So for input functions that are sums of sinusoids, we can calculate the oatput fun
tion just from knowing the how the LIS changes amplitualed phaseat each frequency

The Fourier transfornfsection5, below) shows thamanyfunctiors of physical interest can

be expressed as just such a sum of sinusoids, one at each frégesemneyg can calculate the
output function of a LIS just from its amplitudendphasechange properties

Given the ubiquity of LISs, this explains why sinusoids are of great interest to science and
technology The very general notion of a system, with the mild constraints of linearity and
invariance, turns out to be amenable to ap&manalysis where the behavior of the system
can be summarized merely by an amplitude and phase at each frequency.

4.4 Complex Numbers as an Accounting Téml Sinusoids

Complex numbersan be viewed as an accounting systieat might have beenvented sp-
cifically for sinusoidsand LIS hi st ori cally it wasnodét, .but th
In complex multiplicationamplitudes are multiplied and phases are addedt like the &

fect of a LIS on an input sinusoasperEqg. (17).

Let us represerd sinusoid by the complex numhbat haghe same amplitude and phage (
coud hardlyget any simpler than that

Acoy pft- J «¥% A =Aexp{ f Acos fA sin (18)

The right hand side of this correspondence ismaplex exponentiain polarcoordinatesas

A€” and in rectangutacoordinatesass Acosf +i A sin i. The crucial ingredient ithe imagy

nary numbel, the square rootof . Don 6t t ake t hié litesalyubeocase ir o ot
d o e s n §instea xthink of asmerely combiing two real numbers into a single entity, a

icompl ex dithmpropértgthat is very useful in this contextamelyi® equals 1.

To continue sectiod.3, let usrepresent theffect of theLIS at frequencyf, by the complex
numbewith the amplitude and phaséthechanges it causes that frequengynamelyaé? .
The (complex)product of tlis with the complex numbein Eq. (18) is

Ae’ae?= Aaexd i( 1+ ) (19)

(multiply the amplitudes and add the phas&s).virtue of havhg the same amplitude and
phase this is the complex number thagpresents the output sinusaalculated byEg. (17)
when the input sinusoid is thatlg. (18). Thus the etion of the LIS in transferring the input
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sinusoid inEq. (12) to the output sinusoid ikg. (17) at the same frequency can by epr
sented by a complex multiplicatio8imilarly, adding complex numbers corresponds t- ad

ing sinusoids with the same frequen®&p we can dispense with calculating explicitly with
sinusoidal functions, and instead just calculate with the complex numbers that represent
them® much simpler.

5 The Fourier Transforn(FT)

The Fourier transform is a tool for analyzing a functiom obntinuougreal variable (such as
time) into a sum of sinugds calledthe spectrunof the function.

5.1 FTs of ComplexXValued Functions

Let g be a function defined on all real numbers (such as for all time)g lbet complex
valued (becausecomplexnumbers are an accounting tool for representing sinysibidsis
somewhat unmotivated and even nonsengioal it is traditional) Let g(t) and g(-t) re-

main finite as t becomes infinite. Leg n o t be fAextremelyd disconti

here do not convergaghisisgener al |l y not -war |li dtengfelentoe t h
complex Fourier transfornof g be the complexalued functionF. Let the argument of
vary over all the real numbers abe called thérequencyf.

Synthesis:

g(t) = i} _F(f)exp(i 2ft)df for ti R. (20)
Analysis:

F(f)=f_a(hexp( i pit)dt for f R. (21)

We write thereal and imaginary parts 6fas F__, and F

real img

(which are realvalued):
F(f) = Freal( f) -H:img(f ) ' (22)

The relationship betweemand its (complexalued) complex Fourier transforfcan be g-
pressed by the compid-ourier transform operaté.

F{g}=f=F(f) or F{g}(f)=F.(f) (f). (23

TheFourier transfornsynthesizeg as a sunof complex exponentialsypically
exp(°i ft) =cog 24t) i°sif 2fp), (24)

one at eacheal frequencyf (thoughseeFigure?2: a sinusoid with aegaive frequency has
the sameeriodas a sinusoid with the absolute value of that frequenhich is ambiguoys
Thus, afterapplyingthe complex multiplicationn its integrandthesynthesis integraynthe-
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sizesg as a sum of sinusoidshe units of frequency are cycles per unit;dbr example, ift
is measured in years thérs measured in cycles per year (cycles are dimensignless

We can calculat& from g (by analysis, or thérward transforipandg from F (by syntte-
sis, or theinverse transforiy so the information in the function can be fully represented e
ther agg (in which case we say it is in thiene domainif g is a function of timepr asF (in
thefrequency domain The Fourier transform is thus invertible.

We h av e n thdt giyem tbewdefidition of the Fourier transform in the analksjs(21),
the Fourier transform synthesis Eq. (20) is correct. Tlkreis an intricate mathematical
proof, reasonably weknown, t hat we wonodt reproduce here

5.2 FTs of Realvalued Functions

Almost all functions of interest are realued, and the Fourier transform becomes simpler
when g is reatvalued. Everything above about complelued functions still applies,eb
cause a realalued function igusta complexvalued functiorwhose imaginary part is zero.

If gis reatvalued therits Fourier transform is complexalued but byEq. (21)

Freal(_ f) :Freal(f) ﬁ 2
Fnol- 1) = R | 29

so the values of the Fourier transform at negative frequencies are redundant.

It is easier to work with &urier transforms of realalued functions by focusing on then-c

sine and sine parts, denotkdreby B. and B r especti vel y. (The #ABO
Ronald Bracewell, late of Electrical Engineering atn&ied University, who played a large

part in the modern revival of the Fourier transform, applied it in radio astronomy and image
reconstruction, and wrote an influential text on Fourier transforms in 1978.) Further, we need
only consider nomegative fregencies, because thalues of the Fourier transform -

tive frequencies give you no extra information about the spectrum of-aateald function.
These two policies removibe analysis ofmaginaryfunctionsand redundant (aka aliased)
frequencies rom the picture, allowing us to focus just on the essentials without stumbling
over irrelevant symmetries and unnecessary complications. Fiwallyse the eta functiom

for taking care of the inevitable factors of tww is one, excepthatit is zero wherf is zero
(Appendix A A is the number of normal or naedge frequenciesNow we can define the
realFourier transfornfor Bracewell transforinof arealvaluedfunctiong:

Synthesis:
g(t)=r~5gBC( fycos( 2 ft) +& (f)sir{ 2oft) gf for ti R. (26)
Analysis:

B.(f)=2"f}_g(t)coq P ft) dit

. forf 2 0. (27)
By(f)= 2 ﬁug(t)sin( 2 ft) dt

< oo
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The cosine and sine componeigs and B of the real Fourier transforare often combined
into a complex numbegiving a single analysis equation

B(f)=RB.(f) 4B(f) Zf{ ohexp(ip f)dt, f20. (28)

The synthesis equatid@26) then becomes dot product(that is, the sum of product of cesr
sponding components)

g(t):rj’B(f) exp(i 2 ft)df, ti R. (29)
The dot product gpands as in Eq26) in rectangular coordinates, while in polar coordinates
A€ Texp(ip ft) =Acog 20ft -), Al R. (30)

The relationship betweeg and its (complexvalued) real Fourier transforf can be g-
pressed by the real Fourier transform operBtor

B{g} = fr>B(f), or B{gh(f)=B(f) =2'f g(hexp(i fi)dt. (31)

For a realvalued function,he relationship betweeats complexFouriertransformandits real
Fourier transforns

B.(f)= 2"F_,(f

YR
B(f)= 2R, (1) § 0 (32

or
B(f)=2"F*(f) for f20 (33

where the asteriskuperscriptndicates the complex conjugdighich means change the sign
ofi). (The 2" factar may be regarded as f@dfoldingodo the
representing frequenayver onto the positive par6o he complex conjugate is an arbitrary

sign change in the frequencytig. (21).)

The synthesis explicitly expressgsas a sum of sinusoids, one at e@sbn-negative)fre-
guency (se€ig. 2; a sinusoid with a positive frequency has an unambiguous period).

5.3 FTs of Time Series

Realworld data typically comes as a series, sampled from an underlying funétecm-

tinuous variable g pi cal I 'y ti me, I n which.cd8serehareen
creteo versions of the Fourier transform to
time series, which approximate the Fourier transform of the underlying furaéteocontinu-

ous variabld see[Evans, The Optimal Fourier Transform (OFT), 2018]e are only co-

cerned with functionsf a continuous real variabie this document
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5.4 FTs of Derivatives and Integrals
The Fourier transforms of integsand derivatives of a functionare easily calculated from
the Fourier transform of the functiowhich isinvaluablefor solving differential equations.

Let a realvalued functiorg have a real Fourier transforB) as per Eq(28). Apply a deriva-
tive to the Fourier synthesin Eq. (29):

_g() {n 8B.( f)cos( 2 ft) +B (f)sir( 2pft) G‘f}
:ﬁuch(f)acos(prt) B (f )d—t sir( 2/ft) ﬁf
= {1820 tBs(f)cod 24it) -2 BB, (f )sif 2 fip ¢f

The last expression is theTFsynthesis integral fodg/ dt, and - i (BC +BS) equalsB; - B,
sothe realFourier transform ofdg/ dt is -i20fB(f). Thus

| dt "B{g} (f), forn=0,12,., f20. (34)

Now goply anintegral to the Fourier synthesis:
fp()dt= gﬁgEﬁ fycos(  ft) +B (f)sir{ 2pft) gf glt
=11.§ B f)cos( P ft)dt + B (fsir( 20f) dt @f
ﬁg BS/S ) cof 1t) C( Bl g 2m) Sf .
‘e

This lastis the A synthesis integral fqg(t) dt, and (-i)*(B. Bs) equalsi(B. +iB)
which equals- B; 4B, so thereal Fourier transform offg(t) dt is (i 2of Y'B(f). Thus

B{ﬁ.. gﬁ)dg...dp}(f):( i2p fy"B{g(f), forn=012., f20. (35

The Fourier transform expressgas a sum of sinusoids. Each time we differentiate er int
grateg then we differentiate or integrate all those sinusoids, which all shift one quarter cycle
(from cosine to negative sine with differentiatiam,cosine to sine with integration) and get
scakd by 2p f (differentiation) or(20f ) * (integration).

5.5 FTs of Delayed Functions
Consider the delayed functian— g(t- d) for some delay that is independent af Its real
Fourier transform is

2" g(t- dyexp(i P ft)dt =2 gy @)expi 20f ¢ d)du
=exp(i 22fd) 2 g ()exi 20iu) du
=exp(i 2fd)B(f),

whereB is the real Fourier transform gf and we made the substitution=t -d. Thus
14



B{tr> g(t- d)} (f) =520fdB{g (). (36)

5.6 LISs, and the Time and Frequency Domains

In physics and engineering it is common that the input and output of a system are connected
by a linear differential equation, in which the input and output are functions of time and the
derivatives are with respect to time. Because the equation is in terms of time, and contains no

explicit mention of frequency, this sort of descriptionand analys i s sai d to be
domairo .
A system described by a linear differential equatidnisn e ar . I'f 1 n additi on

efficients are independent of time (constant with respect to time), the systésairs/ariant
and therefore a LIS.

If the system is a LIS timefrequency domain methodseasppropriate: replace each function

of time with its equivalent sum of sinusoids, one sinusoid in time at each frequency, using
Fourier analysis. Then we can analyze the effect of the LIS (or linear differential equation) at
each frequency in isolation, because what happens at other frequeasies effect. Calc

late the output sinusoid at each frequency, then add them all together to form the oatput fun
tion. Such an analysis, using explicit frequencies, and where only the sinusoids are dependent
ontime,issaidtotakemae A i n tyh ed of m@étegmtite sinasoids are not evea e

plicitly stated, but are merely implidit the analysis as written

To move the description of the LIS from the time domain to the frequency domain, take the
Fourier transform of all functions of tildewith the analysis integré which converts them

to functions of frequency. To move back to the time domain, apply the inverse Fouser tran
form to the functions of frequendywith the synthesis integral, thereby adding the sinusoids.

It is easier to solve linear @i#rential equations in the frequency domain than in the tioae d
main, essentially because the derivatives or integrals of sinusoids are just other sinusoids at
the same frequency. In areas like electrical engineering, where circuits are typicallyetISs d
sciibed by elaborate linear differential equations, equations are routinely solved by moving
them to the frequency domain using the Fourier transform (or the Laplace transfornr-a gene
alization that analyzes functions into sums of exponentially growing sds)sdhe sing-

oids are represented as complex numbers, while differentiation and integration bedeme mu
tiplication and division by a complex variaBleso the linear differential equations become
polynomials, which are much simpler to solve.

5.7 Taking the F of Both Sides of an Equation
Suppose an equation says two functions of the same real vam@ablequal, either

9,=0,, or g(t)=g,(t) forti R. (37)

To Atake the Fourier transform of botd si des
tion on each side and equating their values at each frequency:

B{g} (1) =B{g}(f)., fzo0. (39

15



6 Transfer Function

The transfer function of a LISonsists othe amplitude amplificatianand phase sh# that
the LIS causes at each frequenencoded as a Fourier transfoiinis also the Fourier tran
form of the impulse functiofto within a scalindy a factorof two).

6.1 Transfer Function of a LIS

Consider an arbitrary LIS whose input and outputs are functionst,ohnd whose impulse
response i$, as in sectiod.3 The(rea) Fourier transfornof the input sinusoid ikq. (12),
namelyt — Acos( P ft- 7, is

B{gn} ()= Add(f -f), f20, (39
because

B.(f)= Acos¢ ) df -f,Xi

: g forf20. (40)
Bs(f) = Asin(f) ¢f -f,)y

The output functions then the one ikq. (17), whoseFourier transform issimilarly,
B{gour} ()= A2€"" " ¢f -f), f20. (41)

The behavior of the LIS at frequendy is determined entirely bya and g, so it iscom-
pletelycaptured by the (complex) ratio of thalues of thé=ourier transforraof the output to
the input:

B{ gOUT} ( fO) — Aaé(f+ d
B{an} () A€

=€, (42)

Notice that tis (complex)value is independent of the amplitude and phase of the input s
nusoid,so itappliesto all nonzeroinput sinusoidsThe value is specific to the frequendy,
sowe canconstructa function of frequency out of the valuesEn. (42) as f, varies Ac-
cordingly, we define theransfer functiorof the LISSas

B{ gOUT} (f)

R TR IR

f20, (43)

for any input functiong,, whose sinusoid at each frequency is-zeno (o avoid zeroes in

the denominator irEq. (42)). The value of the. | Sti@rssfer function at any frequenchy
tells us how the LIS ftr ans ffeBesaose anhfenctiom p ut
of interest is the sum of one sinusoid at each frequdbgy(26)), the transfer function ¢co-

pletely characterizes the LIS.

With the transfer function, for any input functiay,, we can compute the spectrum of the
output functiong,;:

B{gour} ()= H(H)B{g,}(f), f20. (44)

16



Real Fourier transform Linear Invariant Real Fourier transform
of the input function System of the output function

B{gm} H H B{glN}

Figure 3: A LIS in the frequency domain. H is the transfer function of theLIS. The real Fourier transforms and the
transfer function are each complexvalued functions of nornegative frequency.

Whereas a linear differential equation is the usual method of diegca system in the time
domain, a transfer function is the usual description of a system in the frequency domain.

6.2 Transfer Function and Impulse Response

The transfer functiond from the previous subectionis a complexvalued function of fe-
guencysoit is aFourier transform, but of whatonsider he Fourier transform of the | S 6 s
impulse functiorh. Its cosine and sine components at frequeficare, omparingeqs (27)

and (14),

He(fo) =2"CHl

forf,2 O, 4
Hy(f)=2"0sp — ° 43
so the real Fourier transform lofs
B{h} (f)=2"H(f), f20. (46)

(With the complex Fourier transform, ti# frequencyfolding factor is not needed because
frequencies may be negaa: F{h} (f)=H(f), fl R.)

6.3 Convolution
Taking the Fourier transform of both sides of the convolution i Ej),

B{gu () B{F,a (Ut 9 (9
=z”ﬁng i (Wh(t -u) du Bxp( i 1) dt
=2’ﬁ“né "B (Wh(t -Uyexp(i 2 fi) dt fu
=21 gy (Wexp(i ;pfu)g "M -u)exii 20f ( w)dt i
=2'R 0w Wexp(i P fu)g2"B{H (f) gu
=2"B{h} ()B{ gu} (),

(47)

assumingg,, andh are sufficiently wellbehaved to wap the order ofthe integrals. Thus,
summarizing Eq.410), (44), and(46) in the frequency domain,

B{gowr} () =B{gn N(N 2"B{h(NB{a}(N HNB{a}(h, 20, (4§
or, where theeal Fourier tranforms of g,, and g, are G, and G,

Gour()=B{gy N(NH 2"B{R} G () HNG(H, f20. (49)
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More generallyconvolution in the time domain corresponds to (complex) multiplication in
the frequency domain:

8{o." 0} (N B{f.aa(t 9ah() 22 y& ), 20, (50

for any weltbehaved functiongy, and g, with real Fourier transform&, and G,. The e-
sult is the samayithout the frequencyfolding factor, f complex FTs are used instead:

Flo o} () FH{F.a@att 91 RIRY TR, 6

where thecomplexFourier transforms ofj, and g, are F, and F, .

6.4 Cascaded.ISs

Two systems are in cascade if the output from one is the input to the other. The tragsfer fun
tion of the cascade is equal to the product of the transfetidusof the individual systems
Complex multiplication is commutative and associative, so ther aidthe individual sg-

tems within the combined system makes no difference to the transfer function ofithe co
bined system.

|_ _______________________________ hl
I Combined LIS :
1
Real I HiH> : Real
Fourier transform : 1 Fourier transform
of the 1 LIS 1 LIS 2 : of the
input function : 1 output function
| » T
B{glN} | H, HlB{gIN} H, :HlHZB{gIN}
|
1
L o o el J

Figure 4: Two LISs in cascade, in the frequency domain. EachlS is marked with its transfer function. The transfer
function of the cascade of the two systems (in either order) k$;H».

7 Step Response

The step response of a LISits output function when its input is a step function &ppen-

dix A.3), that is, if the input steps up from zero to one at time 0. The step response of a LIS is
usually more intuitive and easier to verify experimentally than an impulse resonke

useful for understanding and compayiLISs.The output of a system can be computed from

its step response atigke inputfunction.

7.1 Step Response
The (unit)steprespons®f asystemSis the output function when the input function is a unit
step function, namely

r=S{stej =5 t— stept)).
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The value of any input functiog,, at any timet can be expressed as a linear combination of
unit steps:

gn (D) = fidg, = dﬁﬁstep(t u)du. (52)

- O

If Sis linear and invariant, thehe output function o8is thus
e : |
s{te g (8} = § t ﬁ?—'lj'step(t- U du;
| - o !

= ﬁddg—'l:'s{tr—)step(t -u} du

= ﬁ?—'&'[t r(t u)]du,

where thefirst line is by Eq. (52), the second biinearity, and thethird by invariance. fius
the value of the output function at timis the same linear combination of step responses:

°.dg
Gour() = P gt W) du. (53
7.2 Causality

A causakystem is one where the variable of the input and output functions is time and whose
step response is zero for all times before the step in the input occurs. That is, a system is
causal if the effect comedterthe cause. Nogausal systems are not ptogly realizable.

By Eq. (53), the output of a causal systetapends on past and current inputs butamdiu-
ture inputs

7.3 Calculating theStep Response from he TransferFunction
To calculate the step respomrsef a LIS from its transfer functiod, applyEqg. (44) with the
input functiong,, as the step function

r =B{H B{step} (549)

(assunng the output of the LIS isealvalued vhenthe input is a step function.) Teethis
in more detail, firscompute hereal Fourier transform of the unit step function
a(f) s

B{steg = >t

f20. (55)

(To confirm thisapply the synthesis integrial Eq. (26):
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rgB (f)cos( 2 ft)+ B (f )sir( 24ft) ¢f :uéfd( cof 2t

) sinl(j]f)ft) éf
_1 1
=5 *559“@
=stepf), t IR, (56)

by the definite integralGradshteyn & Ryzhik, p. 405: 3.721#1 & pp.xlji[Second]etting
the transfer functioof the LIS be expressed as

H(f) =Hpea(f) (), 20, (57)

where Hg., and H,  are realvalued therealFourier transform of the step response is

Img

eHReal(f)d(f) Hlmg(f) ﬂ Heﬂg(f)d(f) HRea(f)

HB{sted (f )=¢ > Y H g F f20. (59
Third, the step response of ths is
r(t) :B'l{H B{steg} )
1 eI i) 84 51 §
- eé (fz)d(f) pf(f) aﬂ o
O%J,g img : ;} EJ (20ft) ;L/
Houl0) ;‘fIHReal(f)sin(zmt)’;fH.mg(f)coi M)+ k(59

Note that this becomdsqg. (56) for the identityLIS, for which H is unity for all frequencies.
Note also that, becausms( 27ft)/ A is increasag without limit, H,  (f) must approach
zero fast a$ approaches zero from abovénally, note that ifH,  (f) is nonzero then the

LIS changes the phase of the sinusoids and it will contribute a term to the integral that is
an even function in (symmetric around zer)d thus, unless the phase changes caused by
the LIS are carefully arranged to cancel for negatiirethe integral, the LIS will be nen
causal.

Alternatively, in polar coordinates:

d(f) eXp(Ip/Z) ,
B{steg = 5 ot f20 (60)
H(f)= A, (fexdif, (F)], f20 (61)

B{steg (f )=

A (Hexpli £ () ) o
A . [i £ ]+A;9(f)eX|3E|[fH()4;¢]§, f20 (62

r(t)=A“2(O)cos[fH © *nL sif 24t -, f¢ )df ,t W (63)
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8 Low Pass Filter (LPFs)

Consider the followinglifferential equationwhichdescribes a LIS thatrises in a wide var
ety of physical contexts:

1 d
20 dt Gour =WGy -Gyt (64)

where g,, and g,,; arefunctions of a continuous variablge while f; andw are constants
(independent of), and f; >0. Taking thereal Fourier transform of both sides and applying

Eq.(34),

- f
sorBloou (N=wB{a.} (0 B{au} (D, 70, ©9
B
so the transfer function of the system is
HLPF(f):B{QOUT}(f) _ W f20. (66)

B{gIN}(f) 1'i(f/f3)’

This is the transfer function of a first order low pass filter (that is, with one pole), the simplest
type of low pass filter, such as aCRiter in electronics. See Fi§.

Transfer Function of a (First Order) Low Pass Filter

10.00 T 360
 sciencespeak.com
Break frequency
fg
w \L Amplitude | | 270
1.00 +
© 7 m
e] []
2 o
= w = low frequency value = 2.0 >
IS fg = break frequency = 1/ (5.0 years) - 180 T
< D]
[%2])
b
e
o
0.10 +
Phas L 90
5,000y 1,000y 500y 120y 60y 22y |11y 3y 1 year 3 months
0.01 : ‘ ‘ ! 0
0.0001 0.0010 0.0100 0.1000 1.0000

Frequency (Cycles per Year)

Figure 5: Transfer function of a low pass filter. Note the logarithmic scals on the axe.Al ow pass f il ter
sinusoids with frequencies belofiga nd A B 1 6 & kb s @&he higher the frequency, the more it is blocked)
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At low frequencies

Hee(f)=w for f < fg, (67)

so all the sinusoids in thaput appear in the outpamplified by the factok. In the limit as
the frequency goes to zero the derivatives with respecgtoto zero (because everything
changes only very slowly), in which cake. (64) simply says thatg,,,, iS equal towg,,,
which agrees with Eq67). wis thelow frequency valueAt high frequencies
iw
Ho(f)=—— forf>f,, 68
LPF( ) (f/fB) B ( )

so each sinusoid in the input is attenuatednay;/ f and lagged by 90° (for example, cosine
becomes sineps it makes its way to the output. Because-flmguency sinusoids pass
through unattenuatedhile high frequency sinusoids are not passed, this LIS is known as a
(first order)low pass filter The behavior switches from passing to not passing centered on
the frequencyf,, which is known as thiereak frequencyThe effectof a low pass filter is to
smooth a function: the high frequency sinusoids provide the shelmphyging featuresr
sharp cornersf a function,and it is these that are most attenuated

To compute thstepresponseve first reveal the real and imagingrgrts of the transfer fua
tion:

Wg]'+i(f/f8) g_ WfB (f i'Ff), f20. (69)

Hope(F) =
LPF( ) 1+(f/fB)2 f2+fB2

Thenby Eq.(59) the stefresponsés

Hiorreal® Hierrea F)SIN(20 1) H o mglf ) cof 241t)
2 N pf

0

“€f,sin(pft) cod 24t) @
Tor (7o) A7) §

ll- exp( -Dlt)fs)  exd  2df,)
2

Mee(t) = df

2

W\/-

Z
(%2}
«Q
=]
—
—
<
<

= wstep() -w stp(t)exp(- 27|t|fB)

=wgl -exp( D ft) gtep(), (70)
by the definite integralfGradshteyn & Ryzhik, p. 408: 3.725#1 & 3.723#Phus the step
response is just a stepth the corner at zerosmoothed offandmore smoothing wherf; is

smaller (that is, fewer higher frequency sinusoids are passed). The step response ig zero for
less than 0, so the low pass filter is cauSak Fig6.
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Step Response of a (First Order) Low Pass Filter

2.5

| w=low frequency value = 2.0

| fz= break frequency = 1/ (5.0 years)
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8 Step response
= (correspondingutput)
= I
2 1.0 +
E Step function
= (input)
@ L
e
O 05+

0.0 I ‘ ‘ ‘ ‘ ‘ ‘ sciencespeak.com
-5 0 5 10

Year

Figure 6: Step response of a low pass filter (the one in Fi§). A low pass filter smooths off sharp corners.

The impulse response of the low pass filter is, by(&g),

hee(®) =B {2 Hipe()} O
= 132" 8Hprrcal F) COS 1) H Lo g€ )sir{ 261t) g
- &f, cog( pft) f sin 2/t) gf

:ZWfBﬁg f2+f82 ' f2 +fBz e
= 2w, g’% exp( P f, |t|) fexpﬁ 20, |t|) sgr( )g
=2pfowexp( -2 d,t) steg( ), (71)

by the definite integralgGradshteyn & Ryzhik, pp. 406: 3.723#2,#3]

9 Delay Filtes

Consider a LIS whose outpw),,; is simply a delayed version of the inpgf, (the naming
of the filterassumes both are functions of time), for which

Gour(D = g (t -d), ti R, (72

where the delag is any real numbeiTaking the Fourier transform of both sicesd appy-
ing Eq.(36) gives the transfer function as
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_B{gour} () . ,
HDelay(f)—W =xp(i pfd), f20. (73

The amplitude ofH,,, is always unity, but the phases are modified in proportion to &e fr
guency and the delagee Fig.’.

Transfer Function of a Delay Filter
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Figure 7: The transfer function of a delay filter. The amplitude is unity at al frequencies, but the phase change atce

erates as frequency increases (the graphics fail to keepupsithoul d show the phase fAwrappin

To compute the step functipiirst split the transfer function into its real and imaginary parts:
HDeIay(f)zcoq mfd) -"' Slr( Zﬁd), f 20. (74)

Then by Eq(59) and twelve applications ¢6Gradshteyn & Ryzhik, p. 414: 3.741#2 step
response is
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(79)

rDeIay(t) — HDeIayReaKO) %H De|ay,Rea(f)sin(27ft)- H Delay,lmgf )Coi Zldt)df
2 | of
_1 %cos( pfd) sir( 24t)- sif 2fd) cds 2fy)7df
2 oI pf
%-(0) ift > andd ®
T
il 41 &6 .
AT 5 Ift dandd ®
iy & 0!
it
1 io-% O ift dandd ®
== Ce ~
2 31 .
TE_(O) ift ¢dandd<0O
1
~+ 1 418
| O
i-— - ¢ft dandd 0<
% 4 ¢ 4 =
}-%{0) ift eandd O<
=stept d),

which of course is a delayed stdfs causal if and only ifl is nonnegative See Fig8.
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Figure 8: The step response of a delay filter is simply a stépnction delayed.
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The impulse response of the defdier is, by Eq.(46),
My (8) =B {2 Hpg (1)} (1)
= 132" B osmyreal T ) COL D1t) H g€ )i 2111) g
=) 2 goog P fd) cof 2it) +sif 2fal) s 2f) gf
:ﬁxaqwf(d]w
= n cos[ pf ¢ d)df
=d(t d), (76)

where the last equality is justified by symmetry of the integrarficairound zero and that the
impulse response of the identity system (wHénzero) is the impulse function.

10 Notch Filters

A notch filter is a system that allows low frequency sinusoids and high frequency sinusoids to
pass through with little attenuation, but severely attenuates sinusoids with frequencies around
the notch frequency ej &k $ ddidprileenvthe amditude ofitsb a n d
transfer function is a neaonstant function of frequency, except that near the notch freque

cy it dips sharpl§ graphically it looks like a notcfi.here are many types of notch filters, but

here we are only interested in ding the simplest notch filter, its transfer function, and
whether or not it is causal.

10.1 The SimplesLIS that is &otch Filter

10.1.1 A Generic LIS
A genericLIS can be described in the time domain as a linear differential equation wdrose ¢
efficients areconstant (and thus time invariant):

gOUT()_ aq_gN(D (77)

aa dt’

0 dtJ

where g,, and g, are realvalued input and output functions of tifjen andn are positive
integers,andthe a; and b, coefficients are real constants. Taking the Fourier transform of
both sidesand applyingeq. (34),

A a(-i201)B{gou} (f) =8b( i2 4)B{gy} (f), 20, (79)
j=0 j®
so he tranger function of the system is
ab-izpt)

_B{gour} () 1% 2
D=5y 2 10 (79
qaj(-lzpf)
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As f becomes much higher or lower than the notch frequency, the only waid {Hat can
remainroughlyconstant isf mequat n. For example, akincreases without limit

lim H( ) zlfir_nn%(-iz,of)”"”. (80)

So he transfer function of a notch filter is the ratio of polynomials of the same dedree in

10.1.2 A FirstOrder LIS Is Too Simple to Be atdh Filter
Is a firstorder systemih= n =1) sufficient to build a notchEg. (79) becomes

a-ai2pf a, 1-if/f

where

fL = i and fH = &
202, 2pby

are the low and high break frequerscig€his transfer function describes a low pass filter with
break frequencyf, in cascade with a high pass filter with break frequerfigy which
means the amplitude of the transfer functna loglog graphbend down 45 at f, and
bend up 45 at f, (Fig. 9). This is not enough bending to create ehditlter (Fig. 9), not
evenone witha bluntnotch so we need a more complicated LIS.

Transfer Function of a One-Zero, One-Pole Filter
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Figure 9: A LIS whose transfer function is a ratio offirst-degreepolynomials. Thereare mte nough fAbendso i n |
amplitude to bea notch filterd haveonly two bends
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10.1.3 A SeconeDrder LIS Can Be a Notch Filter

Is a seconabrder systemifn= n =2) sufficientfor a notcl? Eq. (79) becomes
+ . f 2_ 2

g +a(d20f) &( i24)

H(f)=

We factorize the quadratic polynomials in the numerator and denominator, treafing
as the polynomial variabd€possibly different in the numerator and denominator)

gDl 7 gglizd z
gl)|2pf Py ﬂ(@'zﬁ P3

H(f)= , 20, (83

for somecomplex numberg,, z,, p,, p,, and some binary variabl&sandl, called the sign
signifiers,t hat ar e equal to either O or 1 &so the
tiond avoiding repetition because most of what we diblvé almost identical for athe sign
combinatiors). Thea, andb, are real, so:

1 z andz, called thezeroesf the system, are eithezal or acomplexconjugatepair.
1 p,and p,, called thepolesof the system, are eithezal or a complex conjugate pair

The sigrs of i in each of the numerator and denominator of (Bf) aretreatedas separate
caesbecause in the calculations below it is convenient to parameterize the poles and zeroes
in polar coordinates using anglést are confined to the first quadrdtite poles and zeroes

are confined to the second quadrant of the complex frequency .gtare)we are trying to

find all notchlike secondorder systemsso we need to consider all possibilitiage @n fac-

torize with either sign, independently lbothnumerator and denominator.

For any given ? order transfer function as in E(B2), there are in general four transfer
functions that differ only by the signs offewer than four if either the numerator or demom
nator are independent Of These four transfer functions all have the same amplitude at each
frequency, but their phases differ. As we will show below, twdefttansfer functions are

for systems with causal step responses, and two haveausal step responses.

Using the real Fourier transform as defined abaven a transfer function is associated with
the sinusoidsin(Zp ft), so - i represents the sinusoidsin(2o ft) or sin[ of ¢t )]. Thus the
transformationi - -i in the transfer functioochanges the sign of the phase changeuwed
by the LIS at each frequency, which in some conteatsbe interpreted as reversing the d
rection of time.This transformation does not affebe magnitude of the transfer functioso

it has no effect on whether it is notltke.

We arrived at Eq(82) from the original linear differential equatidsy takingreal Fourier
transforns and noting thatachdifferentiationin a differential equation is equalent to mit

tiplying by -1 (andalso bysome real valued function of frequedicgsee Eq(34). Although
this suggests we have already associgiedith sin(2o ft) because the real FT doésgoes
not affect the need to consider pdissible transfer functions here.
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Consider quadratiog that can be eithehé numerator or denominator B4. (82):
af) =g D'izef x g@i2d x-. (84)
If x andx, are real numbers then
a(h)* =(40 17 +¢)(4 412 %) (85)

and
Sa(hF =807 (4 517 5¢) (4 H* x)8 b 821p8 ipx*+x) (39

which is always greater than zero. Hence there are nomaax minima in|q( f)|.

If x, and x, are a complex conjugate p#ien x, =a b and x, =a -ib for some real nm-
bersa andb, and

q(f)=a #° 4p*f* (-1) 4 @f 87)
SO
a(H*=(a® 4 4p°f2) 1648t (88)

and

c‘;'—f|q(f)|2:2(a2 4 4p*%)( 84f) 327t 162fga’® b* 4 °f4. (89

Although |o( f)|2 might have an extreme &t =0, this is not of interest when looking for a
notch.More interestinglqu( f)|2 has an extreme at

Jb?- a2

f= 90
2 (90)

if |b| >|a| , and the second derivative aistBxtreme is

2
—la(H)f =160°ga’ 0* WA gws 32 pb° A%, (91)
df2 f:\/_az g 8 2p

b?-
2p

which is negativ@ so theextreme is a minimum.

Now we can construct a notch filter frofaqg. (82). Given that its numerator and denominator
are each either flat or have a minimunmmeimum in |H(f)| can only arisat a frequency
wherethe numerator has a minimuandthedenominator is varying slowlyr herefore

1 The zeroesz, and z, are a complex conjugate pad° ib where |b|>|q, and the
minimum occurs near the frequerfan Eqg. (90).

1 The polesp, and p, are eitherrcomplex conjugatessomewlerenear the zeroeso
avoid creating a maximum far from the minimumhich would detract from the
notchlike shapé or real numbersUnfortunately the transfer functions for thenco
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plex and real cases are structurally different, so they have to be treated separately in
the analysidelow.

This demonstratehat a system whose transfer function is a ratiguafdratis can be a notch
filter, and thatt is the lowesbrdersystenthat carnbe a notch filter.

10.1.4 HigherOrder Notch Filters

The general form of a filter is the transfer function of Et9), a ratio of polynomials irf
with real coefficients Any sufficiently continuous function is sufficiently closely approx
mated by polynomials (at least piecewjs&) transfer functions of physical interest, certainly
those corresponding to linear differential equations, caxpeessed as such a filter

By the fundamental theorem of algebra, the polynomials in(E).are factorable into the
product of irreducible first and seabrlegree polynomials, the former having one real root
and the latter two complesonjugate roots. Any LIS or filter can only be constructed as the
product of such first and second order notch filters, so clearly a higher order notch filter must
be the prodct of second order notch filters that share the same notch freqitemme LISs

that are notch filters are cascades of second order notch filters.

10.2 SecondOrder Notch Filters

Engineers design filters in the complEgquency plane. We are not going topkn that
methodology here, except tnotivate some remarks about parameterizatioshHoying the

poles and zeroes of a secemdlerfilter (Eq.(82)) in thecomplex frequency plane Fig. 10.

(We wonét use these notations here, bait bewe
ture: electrical enginges s ef ot  Pu rfroentt,h el 1slq u aawoed fr@ad o tf ro f
guency measured in radigper unit timei.e. w=2 tf .)
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Complex frequency plane
r12pt; s=s+i2pf

‘lzpfo' ZlHIZPfO' ZZ‘ — nr,
‘infO— leinfO— pz‘ d1d2

‘H(fo)‘ =

Re{s} :9

i 2pf,

Figure 10: The poles and zeroes of second orderfilter , in the complex frequency plane.

The complexfrequencyvariables is shown inFig. 10, on a complex plane. The imaginary

axis is vertical, and show(seal) frequencies. The realxisis horizontal, andhows rates of
exponential contraction (leif zerg or expansion (right side). The zeroes and polesgf

(82) are marked ablack zeroes andblue crosses respectively; they are each complexueonj

gate pairs. Our transfer functidth is only defined on the imaginary axis. (Engineers often
define the transfer functiorfor any point on the plane; thehencall thefunction whose d-

main is confined to the frequency axis fAthe

The amplitude oH at some frequency, is shown in red, evaluated as the ratio of products
of distances fromf, to the polesand zeroesThe productrr, is minimized whenf; is near

the zero frequencyf, and is otherwise fairly flat, which is in accord with our calculation in
involving Eq. (89). But 1/d,d, is maximized whenf, is near f,, so f, should benear f,

and the poles should be to the left of the zenod<g. 10 to ensure the minimization due to
the zeroes igreater than the maximization due to the poles. Engineering experienceand th
ory further informs us that:

9 For a sharp notch, the zeroes should be close to the imaginary axis.

1 Putting the zeroes and poles the same distance from the origin ensunfbis(ﬂ){aﬁs
near unity except near the notch frequency.

1 For stability of the system, the polesistbe in the left half plane.e. have a negative
real part (The transfer functiorand thus the amplification of the systaminfinite at
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a complex frequency where there is a pole. If such a pole is in the right half plane,
where the exponential parts of the complex frequencies are positive, the pole would

amplify an exponentialhgrowing sinusid infinitelyd the system outpuould grow
without limit, causing instability.Keeping the zeroes in the left hand plane might be
wise for stability.

10.2.1 ComplexPoles

Fig. 10inspires he following paraeterizatios of the transfer functiom Eq. (83), using po-
lar coordinatesThe zeroesz, and z, are a complex conjugate paivhile the polesp, and
p, arealso acomplex conjugate paiso ket

z,z=2p texd i(p -.d 2=f4 cos, §sin,)

pop=20feexi] (0 - 24 cos, s (92)

where thezeroandpole frequenciesf, and f, (the reciprocals of theeroandpole periody
and thezeroandpole anglesg, and g, are as showm Fig. 10. Thenthe numerator of the
transfer function irEq. (83) is

-2t 2 gahizd z g
=g 1i2of 24d,( ces,qgi sin,)gg §Y -2f p2f{p cos-i gin}
=4p’g( 1fif f,cosg if, sin,gg(gljf f, eos, gf, sin, gg
:4p2{g( 1fif fycosg g (if, sinzy}
=4p’g 2 @Dti2ff,cosg, +f; cod g #; sif ,qg

(93

=4p’g f? @1fi2ff,cosqg f/+g

Similarly for the denominator Thus the transfeiunction of a secondrder notch filterwith
complex poless

fZ2- £2 «€ ki 2f f, cogy,

H f)= , fz2o0, 94
voenc (F) fZ- 2 € i 2f f,coxy, 49

wherethefour real parametei@econstrained as
f,>0, g, i(45,90) ;. 0> ( 0,00. (95

Note that notall parameters that meetetie constraints will makéd .., a notch filter(gen-
erally speakingthat requiresy, near 90,g, < g, and f, vaguely nearf,). For sharper cts
offs or deeper notche@srequiredin electronics) use a higher order filtdrwhich are just
products of such second order notch filt&se Figl1l.
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Transfer Function of Notch Filter
Four transfer functions that differ only by signs of i; complex poles
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Figure 11: The four notch filter swith a given combination oftwo zeroes and twacomplexpolesas parameterized
here. The four transfer functions differ only in signs ofi (the binary variablesk and ), so their amplitudes are idenit
cal and only their phasedliffer. Not e t h & th& sharp reduadion in amplitude around 11 yeard and the ure-
ven fishoul derso. While not the sharpest, this type

10.2.2 Real Poles
As in the complex caséhe zeroesz, and z, are a complex conjugate pair, and we use the

same parameterization. Howevke polesp, and p, are real For systemstability they must
bothbe in the left half of the complex frequencymmén Fig. 10, so they areegative:

<0, p,<0. (96)

The complex and realpole casesoincide when the poles are the same, both on the real axis
at a distanc® to the left of the origin in FidlL0:

f Inthe omplex casggq, is zero and is 2p f,.
1 Inthe eal case,p, and p, are both equal te D.

To make the algebraelow easier and to parallel the frequenciefg and f, in the complex
casewe define theadialexponential decay constards and d, by

p= 2pd, p,= 2od,. (97)

Thus 2pd, and 2pd, are the distances from the origin leftwards to the poles inlBigihey
are the multipliers of time in an exponential deaaynt their units arenversetime, and their

inverses are exponential decay constants

Thedenominator of the transfer function in £83) is then
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&-Vizpf p g@izd p;  gDe2p 2dp (higd p2d,
=4p*g()if o ggHf d,+ g (99)
:4,02gd1d2 -f? (+1)'—if(d1 dz)kg
so, by EQ.(93), the transfer function of second order notch filter with real poles is

f2- £2 4 1) 2f f, cogy,

H f)= , f20, 99
Notcth( ) dldz' f2 _( :Bllf(dl dj) ( )

where the four real parameters @onstrained as
f,>0, g, i(45,90) ,d, 04, ¢(d, d,. (100

There is little difference ithe magnitude of the transfemction between real and complex
poles; a given transfer function capparentlybe constructed from either. See Fig.

Transfer Function of Notch Filter

Four transfer functions that differ only by signs of i; real poles
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Figure 12: The four notch filters with a given combination of two zeroes and two real poles as parameterized here.
Almost indistinguishable from Fig. 11 (though they are different).

10.3 Step Response of SecondOrderNotch Filter

10.3.1 Complex Poles
First split the transfer functioof the notch filteiin Eq.(94) into real and imaginary parts:
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&§f7- 2  Bi2ff,com, gfd ¢ (U 2f, cosg
(fpz- f2)2 #4f?f?cosq,

£ &hf7- £2)(f2 -f?) @1E'4f % 1, cogy, cosg g

i+|2f g2 -t?)( Bf,coy, (87 173 ( Dfs cosgé
f+ 1 22 *(2codq, - 1)

:(f“+af2 +4 { +)77

f*+2f2f?coq Z,) H,

H NotchC ( f ) =

(101

where
a= 4] & g+1)2f,cosqg g(gl) &, cosg
b=1212
9= 1)2f,cos g g- (gl %, cos,q ¢
m=f g 1)2f,cosq gt; (g &, cosyg .|

(102

Then by Eq(59) the step response tiife notch filter is

HNotch,ReaKO) -IEI;‘H Notch,Rea(f)Sin(ZUft)_ H Notch,lmg(f )COi Zldt)df
2 0' pf
b f*+ &2 + b .
= A sin ft) df 10
21 T!ofgf4+2f2fzcos( 2q) #. g (1) (109

i gf?+ m
gf +2f2f2coq 2¢g)

rNot«:h;c (t) =

cos( P ft) df

This integration was performed numerically (in polar form, ®§)), and gives the same-r
sult as the following calculatioBy [Gradshteyn & Ryzhik, 1980, pp. 411, 3.733#4 #2,#5]

e}

f*+af? +b .
N sin ft) df
Mg 2t 2g 41 g "

sin( 23, - 2 dplt] sin .

Lol -
- 2exp( |t| . cosq) Sn(23) gn( )
a sin( 2o f, [t] sin g) (109
+ 202 exp( -lt| f, cosg) (2] sgr( )

b @ (2£/p+2/fp|t| sin
+ él -ex t| f, cos usgrn(

By [Gradshteyn & Ryzhik, 1980, pp. 411, 3.733#3,#1]
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e gf?+ /
op&ft+2f7f 2coq 2¢) + 2

cog o ft)df
Hs( )

o2t
ol 1, cosg) 2 =0

sin(qp +2 ft] f, sin P&
sin( 27,)

_ g
2f,

m

C 213

exp( - f,t| cosg)

Thus

e+xp(- .t cosg)

2sin( 2y,) o

b
Mvotene () = T, 4'[1 sgnt j
P

where
L(t) =sin(25 24 f, sin 4 sgri()
+af.?sin(2 4t f,sin g sgry)
- be;“sin(Zg +2 |, sin F,)qsgrt(
- gfp;lsin( g -2 |bf,sin P)q
- mi*sin( g 2 [Bf.sin g
Let
r=1,/f, and x=2 p|f,sin ..
Thenby Eqg.(102

expl- pf.|t| cosg
INotch ®)= /’ZStep( )+ 4(1$inc7 PL(LS q )
P

where
L(t) =sin(2g, -¥sgn()
+8 77 E (#)4 rcos,qcos, @si ) sgn(
- r?sin(2 g + bsgn()
- 8 1) 2coxy, { 1§ 2rcos,ggsih, g )- x
-8 D2rcosg { B 2?%cos, gsih, g)+

Expanding the trigonometric functioms L :

(109

(106

(107)

(108

(109

(110
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L(t) = gsing, cos g cos x-cds , ¢sin  #sin, sing sgn()
+( 7% + (4?4 rcos chosp)b sin] sgn()
- r*g2sin gcos ,qgcos #cds, gin - £in, sigyg SoR(
- & ) 2cox;, { 1§ 2rcos,gfg sin, geos xeos  gh
- 12r cosg (1) 2r®cosg [gsin ,gcos #cos, §ir

Collecting terms

et+2sing, cos g sgri( ) g

e . , . u

= 25 “Sin g cos n N
L) =5 q pGsgrt( ) {;::OSX

zg-( 1) 2cosy, sing £ B 2 rcos, gsin, 94
& ( 12rcosgsin,g € 1) 2° rcos, §in, §q

& coS g, sgny( ) g
é u
é*sin® g, sgn( ) u
g+( -2+ (#)Y4 rcos ZC/cosp)C/Sgn()ul‘J

+g +%cos gsgnt) Sinx '
u

g+rzsin2 gsgnt) u
é+( 1) 2codq, { 1 2rcos,gcos, g U

g-( 1)2r cos g cos,qg H 1) 2% rcés, é

Simplifying:

(‘?+2(1 -r2) cos g sin ,gsgn( )2
L) = ) %
& (9 2(1 ¥ )cosg sinq U
e (1 47"2)0052 g sgri( )

e

ér(1 +2)sin® gsgn()

e <
+€{ r* 1-( 34 rcos ,geos, )gsgn( P sin
€+( 1) 2(1 #?)cod
¢ ( 2) ( )co q

co oo oo ooy

g’,( 1) 4r cos g cos.q
:2(1 -rz)cosgsinypggn@- (-1) gosx
X (1 +f2)co§ g sgrt( )

o

é " u
é+( 1)“"'2r cos g cos,gsgh( VU

vy (4 q pGS9 ()lajinx

&-1) (1 vz)co§ q O

é u

& (1) 2r cos g cos.q 0

SO

(111

(112

(113
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L (t) :2(1 rz)cosgsin @ sgn() { 1gcos x

1+ r?)cos gef-1 n()a; a -
+2|F( ) 7o =2 inx .

i
j+2rcos gcos,@ (- ' sgn()-( 1) & (114
= 2(1 -r2) cos g sin @ sgn( ) -( 1) geos x

+28 (1 H-Z)CO§ g 2 ros,xos @Y @ sgn()-1 gnx
andfinally

& (1- r*)cos g sin ,gcos x|

L(t) =2gsgnt) { 1 %+ g( 1)*'2r cos g coqugnx | (115

g(l 2)cos ¢ i

—_—) =),

Thus thestep response of thé%rder notch filter with complex poles, whose tramstirc-
tion is in EQ.(94), is (finally!)

e ©) = rstep() £ gsan() B gob kA ofs8) B +dndy) (119
wherethe constants (independenttpére

, (-1)"'2r cos g -( 1 +2a cos,
A.=1-r B. = _
sing;,

w, =2 pf,cos g o/, (117
w,=2 ffsin g

Note thatu, >0, n, >0, and r >0.

The character of the step response depends decisivelyFon complex poles, if is zero
thenthe step response is

o op(ni)ghcof w) B oS W) g it
|

rNotcth,O(t):::\rZ _; ift & (118
|
bre if t >0,

which is noncausal (that is, nemero before the stegtimulusstarts at time zeroHowever if
| is onethenthe step response is causal:

€0 ift<0
t1
I“Notch;C 1(t) =J| E if t © (119)
T
}r2+exp( -t)@A. cod &) B sif W g it O
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The effect ofk is confined toB., which does not adict the character of the step respohse
also affectsB. .

This result has been checked against numerical integrations i@y in Eqg. (63). An ex-
ample is shown ifrig. 13.

Step Response of Notch Filter

1o Four transfer functions that differ only by signs of i; complex poles
Step function\
1.0 + (input)
) z=zero angle = 87 h
& 081 f,=zero frequency =/1(11.0 years) '
a = poleangle = @ \ k=1,1=1
g 0.6 fo= pole frequency =1/ (7.6 years) '..
B : k l | O "‘ ’ g - e o - -
’(\\l 1 =1,I= () ‘-—’—-_-
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gﬁ . " '
3 : ¥ k=0,1=1
(%U -0.2 + ‘r:l
L i
- k=0,1=0 th
B ]
0.4 1 ;r;:
-0.6 . . ! | ; L ! ! l ; | | | | ; | sciencespeak.com
-10 -5 0 5 10
Year

Figure 13: Step response ofhe four notch filtersin Fig. 11, with complex poles The four notch filters, sharing the

samecombination of two zeroes and two complex poles as parameterized helavetransfer functions that differ

only in signs ofi (the binary variablesk andl). Whenl is 1 the step responsés casual, but wher is 0 the step re-
sponse is nofcausal (.e.the step response starts before the stimulus, that is, before the step function rises)

10.3.2 Real Poles

First split the transfer fuation of the notch filter in Eq99) into real and imaginary parts:

(fZZ_ f2 « Bi2ff, Cosqz)gjld £2 (it(d, d,) g
HNotchR(f): >
(A= 1) +%(a, o)

7. 17)(dd, -17) ED21%(d, dpt,com, 9
+if gdd 2)( 1 2, cosg, (fzz fz) ( B(d, d) a}
d?dZ+ £ +2(d? &)

(fi+et? +3 i{nt3+ £)

(Fea) (e a) ' ° 129

—> ——XD:

where
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e= -] dd, g+1)2f,cosg g(gh(d d,)
z =f7dd,

n=g 1) (d, ) g (-g)kaZ cosqg g
t=dd, & )2f,cos g g4, (gh(d, d) .

(121)

Then by Eq(59) the step response of the notch filter is
H NotchR ,Rea(o) _:r:xH NotchR ,Rea( f )Sin( 20 ft) -H NotctR ,Img(f )CO% 2,dt) df
2 O' pf

z : f'+ &% + 2z .
= -Ir'" 2p ft) df 12
2d7d; ot (f2+d?)(f?2 +d22)sm( ) (129

o

r.Notcth{ (t) =

nf?+ t

- ﬁo(f2+df)(f2 _'dzz)cos(a)ft)df .

This integration was performed numerically (in polar form, ®§)), and gives the same-r
sult as the followng calculation.By [Gradshteyn & Ryzhik, 1980, pp. 409, 3.728#4,#2]
when f, and f, are unequal,

o f'+ef?
Mot (17 +d2)(17 «
_ d?exp(- 2d|Y) -d; exd 2m,|1)

2) sin( 2o ft) df

2(df- df) sgnt) (123
+@exp(- 27d1|t|) -exd 2,aziz|t|)sgn¢)
2(dz- d?) '

Unfortunately the definite integral involving is not listed ifGradshteyn & Ryzhik1980]
except whend, and d, are equalin which case byGradshteyn & Ryzhik, 1980, pp. 412,
3.735#1):

e}

~ Z
opf(f2+d2)( 12 47

1 ¢ 1
:ngl _ZeXp( 2ldl|t|)(2 2"¢?|t|) %gr[(]

sin( 2o ft) df
) (124

Guessing the definite integral in the second part of the left hand side using the pattern of
[Gradshteyn & Ryzhik, 1980, pp. 409, 3.728#1,#2,#3wén d, and d, are unequafwe
laterusedtwo other methods, numerical integration and estimation of the step response using
the FFT, to vefy theresulting step functigrsowe are confident that thguesds correc},
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V4

:bf(f2+df)(f2 4d22)sin(20ft)df
oz ] f,2exp(- 2d,]t) -f,% exd 24ml1)
—msgnt) z 207~ ) sgn( )

By [Gradshteyn & Ryzhik, 1980, pp. 409, 3.728#3,#lllen d, and d, are unequal,

°, nf?+ t

IR G

_ _ndlexp(- pd|t) -d, exq 2,1

3 cos( P ft)df

2(f2- d?)
 Gtexp(- 2dyft) o' exif 2a1)
2(f72- dg) '
Thus
- od, |t -2/,

where, by Eq(102),
L,(t) = d’sgnt) e-sgn() 2* sgri() dp dt+
L,(t) = d;sgnt) eisgn() &;° sgri() dz+ d,t-
Let
y =2f,cosg.
Then by Eq(121),
L,(t) =gd} e #° ggnt) dy dF
=gd? +) dd, (D) (d d)+ £dg" ggn(y)
- (D' (d, o)d (Afyd (yd (1 £(e d)d
=gd, d,)d )"y (d d} f(+d d)d gan()
-( ) (d, &)d (Ay(d+d,) { B f7(d, dpd?
=(d, #d,)gd, ¢ )y f4' @O (H -¢

and

(129

(126)

(127)

(128

(129

(130
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- L(t) & e & gnt) dr di+
=gd? 7 dd, (D" (d d)+ £de" gan()
() (d, &)d, (Afyd, (Dyd (1 E(d d)d
=gd, #,)d, ¢ D (d d} £(+d d) e gon(d
- (D (d1 drz)d2 (+1)ky(q+d2) {1 fzz(d1 dgr) cr2l
:(dl +d2)gd2 ¢ D'y f§ﬂ2'1 gsgg](t) (B - g

(131

Hence the step response of thé@der notch filter with real poles, whose transfer function
isin EQ.(99), is

o () = 2 -step() Sgson() | H gh ep Af) B -ofp AH) (132

where the constants (independent)afre

_d,- (9)*'2f, cogg, #d*

AR dl - dz
k+l 2941 (133
BR:dz'('l) 2sz037z i'zdz )
dl - dz

The character of the step response depends decisivelfronreal polesfil is zero therihe
step responsis

Moenz ot) =€ A exp( pdt) B, exq 2ml ) ift & (139
|
= if t =0
12
| 2
71z if t >0,
fdd,

which is noncausal. However ifis onethen the step response is causal:

Motene 1(t) = €0 ift 0 (135
I c2
1 fp 1 ift ©
jdd, 2
T ¢2
Idé + A, exp( pdt) B exd 2 ift 0
[ 12

The effect ofk is confined toA, and B, which does not affect the character of the séep r
sponsel also affect, and B;,.

This result has been checked against numerical integrations G} in Eq. (63). An ex-
ample is shown in Fidl4.
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Step Response of Notch Filters
Four transfer functions that differ only by signs of i; real poles

1.2 T
i Step function\
1.0 f (input)
G o8| fz_: zero fangle = 8"7_ / ‘|
S - f,= zero frequency = 1/ (11.0 years) '
*g_  d, = decay constant £ 1/ (7.0 years) ' k=1,I=1
5 0.6 1 d, = decay constant 2 =1/ (8.0 years !
o : 3 becaced--. o
S 04 f o " Jocsss=s
g k=120~ | 2553, '\ ’;;,/
| ” \ [\} ’I/
= 1 27 [} W ,r,’
s % g N
g. SR PR NS P Lt 7 ‘\L 1 ~=1
g oo : =
£ i '? \
o 021 !
S : it k=0,1=1
< 5 ]
o 04+ ":
; k=0,1=0 !
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-0.8 i ) | | | | I | | | | | | sciencespeak.com
-10 -5 0 5 10
Year

Figure 14: Step responseof the four notch filters in Fig. 12, with real poles.Similar to Fig. 13.

Fig.s 13 and 14 show that, at least for the parameter values depicted, the step response of a

notch filter would beroughlycausal( t h at i s, if ¢ was dimpdy delayegl.hAD )
least to a good approximati, a delay of about 11 years would be sufficient.

10.4 Examplel: Series RLCircuit

Here we examine a simple electronic circuit that implements a simple sexsrdnotch i
ter. We find its transfer function from first principlefind its step response kapplying the

result based on Fourt@nalysisabove then confirm from first principles that the step r
sponse so found is indeed its step response

10.4.1 The System

Figure 15: A series RLC circuit is a notch filter. It consists of a resistoR, inductor L, and capacitorC in series.The
input voltage isV;,, and the output or notch voltage isVy. The LC section is a resonant circuit, and near the resonant
frequency its impedarce is low. The notch voltage is just the voltage divider between tReand LC sections.
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The input of the system is the applied voltage andthe output is the notch voltagé, . Let
| denote the current ithe circuit. Elementary circuit analysis yields two equations to describe
the circuit:

dl 1
L—+RI +@{dt ¥ 13
dt CnI " (139

V, =V, -IR. (137)

in

R, L, andC are positive andonstan{independent of time), whil¥, , I, andV,, are functions

inl )

of time. All the components of the circuit are linear and invariant, so the system is a LIS.

For numerical expression in this exambd,

R=3, L 4,C 1 (139

10.4.2 Differential Equation

The input voltage/,, is taken as given; we are trying to solve for the notch voNggé&lim-
inate the intermediate variabldoy substitutingR‘l(Vn - \@) into Eq.(136), giving the an-
gle circuit equation

L dV 1 Ldv. 1
— +V, +— dt = n - 4 \(ﬁdi. 13
Rdt " RCﬁ/N R dt RC (139

Differentiating with respect to time and multiplying /L,

*+Rp il @ p¢ Ly (140
& L LC g8 LC

whereD is the differentiation operatad/dt. This last circuit equation is the linear differe
tial equation thafully describes the systertt.is linear and invariant, so it describes a UIS.
is a seconabrder linear norfhomogeneous ordinary differential equation, whosthods for
solution arevell known e.g.[Tseng, 2008]The correponding homogeneous equation is

2+ Rp i% e, (141)
& L LC
whose characteristic equation is
p?+Rp +1 @ (142
L LC

The differencebetweenany two solutions tdeq. (140 is a solution to Eq(141); therefore
every solutionto Eq140)i s any fdApart i c (140glus oseoof thetsolubamd t
to Eq.(14) (whi ch are collectively <called the
circuit, the complementary solution describes the transients (which hopefully die aveay to z
ro before long), and ehparticular solution is the steadtate solutiorfEdminister, 1965, p.

242].

0 |
i cC

The solution to theharacteristiequation is
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D=a °¢ (143

where
R aR 5 1 | 1
a= —, b= A —— a —. 14
2L &L 2Lc LC (149

The solution has three cases, depending on whethisrthe square root of a positive, zero,
or negative real numb@rthe overdamped, critically damped, and underdamped tes@s-
tively. In what follows weneed only consider ond the main cases, so we are only going to
consider the overdamped case; thuss a real number and

a<0, b>0, la|>t a° b9. (145

Continuing our numerical expression,

J5

=15 b —221.12, a ﬁ%—J—B: 0.38,- 2.6. (146)

[

a=

N

The differential equation is expressed in termg&adénd 6 as

8- (a +5 g a )b/, g&d2 2 Da( * a°) W gDZ _I_=1C_: \g (147)

while the homogeneous equation is
8D-(a +4 P& a by, g&D% 2 Da( * +a°) W O. (148

Becausehte roots of the characteristic equation (Bdl2) are real and ara ° £, the con-
plementary solution (the solution tiee homogeneous equation) is

Vi) =cé™ ¥ gt (149

for some constants,, c,i R thatare determined by the boungtaconditions after the general
solution(the sum of a particular solution and the complementary sojusdound. Note that
both terms in the complementary solution each satisfy the homogeneous equation:

&D-(a °H g&" " e (150
Becausea ° £ are negative, the complementary solution consists of two transients that die
away with time, but whic are infinite for infinitely negative times.

10.4.3 Transfer function
When we excite the system with an input voltdgethat is a sinusoid at frequendy, the
outputV,, will also be a sinusoid af, because the systemisalLl®ev al ue of t he

transfer function atf, is the output sinusoid represented as a complex number (as per Eq.

(18)) divided by the input sinusoid represented as a complex number
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Let the input voltageV,, be cosfyt ), wherew, =2 pf, andf, >0. It is represented by the
complex number unityso the transfer function is just the complex number that represents the
output sinusoidThedifferential equation describing the systefy((147)) becomes

Ary 2 _2 1
ép’-2aD {4 -Y g =lmos( t W geos(d - (151)

V, is a sinsoid at frequencyf,, so let us try a particular solution of the form
V, (t) = Acos(t) B sin(ut ) (152

for some real numbeisandB. Then the LHS of Eq151) becomes

-2aD -(a? ?j [ cos( .ty Brsin( ti
= w/[Acos(ut) Bsin( &)

- 2a Y Asin( @) Bcos( W}
+(a2 ] 5)[Acos( &) Bsin( v (153

=8 WA 2a B (+2a z)bﬂ\ gos( t)
+&WB Fa A (¥a YB gn( 1)

SO
2 2 1
WA 2a @ (r’a A 2 W (154
-wB Ray (+’a B 0.=
Hence
__-2awy
B_mA (159
and
P wB+L'C*h - v
T A B - w
28 ;o 2”;’5'4/ T
= (156
a’- b - w
_-4a’ @A {rct @ a “p 3
(e2- 6 - %
SO
A=/( 4 - -2y (157)
and
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B= 2a (158

where

Lic -
= e _ 15
aa fp+( & - b -2n 9

Therefore garticular solution is
Vi) =/(4 - B -2Jeos( tw2 asim(/} . (160
[Checkby substitutingt into Eq.(151):
LHS=¢D’ 2aD (+& ¥ ¥,
E-w(& - b -Jeos( g 2+ lmin( ) w
ag a-?bZ)sn( §) ¥ Zeospy) w
+(av2 - 13)( a -’b ;f)s( w2 - e(aZW %)-sin(b; )i,/

[ et e

=/

—— T A Y ) —) ——

=/{ -8 & - Jwa £ a(w™ 4)(- b *a-Jos(w)
+/{ 2a g+2 afva * b2) o [(dw Ysinbt) w
=/{ad w{ 2a-2bF(w* a* Bjcost §) w

+/ {0} sin( )

=(L'c? -Wj)cos(vgt)

= RHS. ]

Adding the complementary solutiomEq. (149, thegenerakolution is
Vi@ =/(4 - D -2eos( tw2 _asim(/y) cpt' ¥ cgf) (161)

for somec,,c,i R. The boundary conditiothat V,, remains finite as time goes to positive or
negative infinityimplies thatc, andc, are zeré which is to be expected because thege re
resent transients but a true transfer function is the responsénjouaisinusoid that exists for
all timeand thus involves no transienfde output igherefore

Vi) =/(4 - b -2Jeos( tw2 asim(/} ) (162

the sinusid at frequencyf, represented by the complex numbéré- D- j)/l/i-z a.
By Eq.(144), a’- 6 isequal toL 'C *. Hence the transfer function of the system is

(az- 6 -4 %jz) i-4 pa
1602 41 2+( &- b4 *p)

Hy(f)= (a> -8 447, f20. (163

Observe that this isonsistent witka notch filter:

1 As f- 0,|H(f)- 1.
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1 As f- =, |H.(f)|- 1,the same nomero value as whetfi - O.

1 |Hy(f)| is positive for allf, except that it is zero whefris 1/2pJLC . Thus it is a

minimum at]/2,0\/LC , Which is the notch frequency.

We can establish if this is a notch filter by seeing if it is of the form of the transietion of
a seconebrder notch filter, above. The solutions of the characteristic equatioiil4e?y) are
real, so if it was a notch filter it would haveal polegather tharcomplex polegndits trars-
fer function would bdike H ... - We need to comparel ... in Eq.(120 with H in Eq.
(163 in order tofind e, z, n, and? , andthenfrom thosefind the f,, g,, d,, andd, pa-
rameters used in E¢R9). L e t tarby msatchingthe denominatorsThe denominatoof H

in Eq.(163) is

160 41 2+( &- b4 *p)
1607417 { B - 18P 8% ¢ &)

2

“16ptt* B @+ (+2a ¥ o

£ f?la’+ 4 - %p f
:1604\: f4 + ( ~ ) (".‘ ﬁ LI
2 20 160 3
l §
and setting this to the denominatortef, .. in Eq.(120) gives
f?la’+ 6 a-°?
f4+ ( _ )l p E2 dd)(f? dP} (164
2p 16 p
Therefore
2
o2 + d? a +25
16
242 (az_ 5)2 °es
dld2: 4 !
160
SO
da+ b & 1

Becaused, and d, are positive (Eq(100)) while a ° £ are negative (Eq145), only the
negative square roosse valid

dl = , d2 = . (167)

Thus

, & o , -0 d, = (169
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Now match the numerators. With the denominators as irf{l5¢), the numeratoof H, is

>4 H) 4 pa, i
2 160“)I (a- 5 4 1)
(169
_(a’- 64 H) ; 4 2a’ &%

160* 4p ’

while the numerator oz is (f“+ef2 +‘)' i( fri f+)1. Thus, substituting fo
and 6 using Eq(168),

e= > =2d.d,
z= (a' ) £d,d,)’
(170
n:i =d, d
a1 _
d= d,)é,d,
= — 5 . (0= d)dd,

We now compare these to §G21). Fram the equation foz , f} is equal tod,d,. Subsk
tuting for f in the equation fore, cosg, is zeroso g, is 9C°. Substituting forcosg, in the
equation forn, | is one Substituting for f”, cosg,, andl satisfies the equation far. Thus

the mappmg betWEEth and HNotcth i

a+ b a b 2 a? b
d, = TR d, T 2 deg 7 9 90,4 1 (17

The zeroesand poleare(see Eq.£92), (171), (144), (97))

z,z=2pf( cosg Psin,y #2fp i2fm, i =4 P
JLC (172
R [aR.,D 1
= , 2 °h —= - °ox -
2pd, 2@, = 2L V&L 0L

Continuing our numerical expressjon

_a° b _3 J5
d,d, =
2p 4p

0.861,0.417 Hz,f, 2—1 0159 Hzy, ¢ (173

TN

and

z,2,= “iradls =2'° Hz i (°159 Hz
7 (174

J1o:ot”

P R = 1= 0.38, 2.62radls 0.061, 0.417t

N o
NG

which agree withndustry websit¢§Okawa Electric Design, 2015]
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That the transfer function of the system in B3 can be mapped onto the transfer function
of a notch filter in Eq(120) confirms that the system iisdeeda notch filter We canuse that
mappingto give the transfer function he form of Eq(99):

f2- f2
Hy(f) = 2
O
dd,- f° -if (dl dz)
_ at- B 4yt
T2 2 (175
a’- 6 -4 d* i4 p
_ 1- 4,02LCf2
1- 4p°LCf? -2 RCf
Transfer Function of the Series RLC Circuit
100.00 + 360
! sciencespeak.com Notch
frequency
o
()]
©
S 10.00 + : - 270
> g Amplitude
>
g Phase—— .
= 4
g g
2 o
> ()
S 100 ¢ - 180 T
> i )
c 0
o ©
(@] <
< o
k) R=3L=1C=1
é 71,22 = 40.159, -0.159 Hz
2 0.10 1 pl,p2 =-0.061 -0.417Hz r 20
< — =1
0.01 ; b b 0
0.0001 0.0010 0.0100 0.1000 1.0000

Frequency (Cycles per Second)
Figure 16: Transfer function of the series RLC circuit. Note the notch in the amplitude.
10.4.4 Step Response from the TransfBunction
Now that we have the transfer function of the system in the form used to compute the step

responsdy Fourier analysisbove, we caapply that resultSubstitutinghe mappingf Eq.
(172 into the step response Eg.s(132) and(133),thes y st embés d¢ ep respons

a N (a+ Bt a )t
r(t):step()?step(g( o daw (176

which is causalwith the transients in the second term only existing whisrpositive and
dying away ag increases(k was notdeterminedabove butit does not affect the step-r
sponsebecausecosg, is zero Thus the Fourier analysis gave only this one step response.
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Step Response of the Series RLC Circuit
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Figure 17: Step response of the series RLC circuitt is causal. Theresponse is the same as the step input, except for
sometransientsthat soondie out.

10.4.5 System Stability
The transfer function in E§175 can be converted to the Laplat@nsform transfer function
by substitutings for -i2pf :

s+

1+s°LC e
Hyo(S) = Lc (177

— 2 e
1+s’LC +sRC ., R 1

L LC

The complex frequencyis s +i2 4 , wheres is the rate constant in an exponential factor

e” that multiplies the sinusoids in a Fourier analysis as performed by a Laplace transform. In
(regular) Fourier analysis as abowe,is zero. Heresis -i2pf rather thamt+i2pof becausé

isoned see Eq(83). Electrical engineers will recognizg, ; as the expression fof /V, in

the Laplaceransformed version of Fig.5. The poles ofH , are the solutions of the chara
teristic equation, namely °© £, which are both negative and thus in the left half of the s
plané so the system is stablalternatively rote that the transients of the step response in
EqQ.(176) get smaller as time progres8eso the system is stable.

10.4.6 Step Responsby Solving the Differential Equation

Here weconfirm from first principles thahe functionr in Eq.(176) is the step respongeof
the system, byestingr in the differential equatiofor the systemThe step respondeis the
output voltageV,, when the input voltag¥,, is the step functiarso it must satisfy Eq147):

51



-2aD {4 -Y B gB° L'€" ger. (179
The step function has derivatives that involve delta functions; let us denote them by

Dstep= step
D?step= step

179
We nowsubstituter in Eq.(176) into Eq. (178). First, note that
€0’-2aD {4 -9 gep() stept() 2-amtep(i) 4 °) bster (180
and becausesteq and stef are zero except when their argument is zero,
ep*- 2aD { & %j gep( §°°
—Qstep G p 2 J(a °f step(§ “)”  step(() a )bé
- Zagstep()e " +step(fa °pd 7" @

u
+(a2 -5)step( gl A (181)
afla o 2l a) 4 ) gench

P+da ") 2 agen() stepi() 2

a+gtfga2°2¢ab+ b2 *2  ad agep)f
U

[+[b gstent) stept()
=(a Ystept) stepy().

<

Then, with the aid ofEq. (144),
€p’-2aD {4 -} at)
=eD° 2aD (+& 3 %step() %step(ge(a* b d e i
=step (i) - 2 stept() (+& Y step()
+3g a Wstent) step()( -a-)bstep()istep ()

=stef (i) w(a ) stefd( )
=gh* +'C* gept)

so the functiom in Eq.(176) is indeed the step resporifehe system.

10.5 Example 2: Reversed Series RLC Circuit

Consider an imaginary system that is the same as the notch filter circuit in S€ctoex-

cept that time runs backwards! We do this merely to generate a systemthieabhdgcausal
counterpart of the previous examph®t because time really runs backwards or we have any
interest in knowing what might happen if could be said to run backwards.

52



10.5.1 TheSystem
The circuit equation is as pEg. (139 except thatdt becomes- dt, so the equation desbri
ing this system is

Ldv 1 . _Ldy

1
=N\ V. 18
R dt RC Rd " RC (182

10.5.2 Differential Equation
Differentiating with respect to time and multiplying byr/ L,

&, R 1 e 1
D?- —D +— DE + \ . 18
g L LC g L.c " (183

This circuit equations the linear differential equation thtatly describes the systendiffer-
ing from Eq.(140 only in the sign of the lonB term Its homogeneous equation is

&, R 1
D°- —D +— G, 18
g L LC % (184
whose solution is
D=a % (1895

wherea and b are & abovein Eq.s(144) i (146). The differential equation expressed in
terms ofa and 6 isthus

bY

\ N A2 — 2 e~ 1_
g-(a 4 g(- & )b, ged* =2 Daf * a¥) - D E_g (186
again differing from Eq(147) only in the sign of th® term.

10.5.3 Transfer function
Tofindt h e s yransfer faoicBon we excite it with inputosfst ) as above, whereupon
the outputV,, must satisfy

A 2 -2 1
€p’+2aD {4 -Y g =lmos( g W seos(d . (187)
Proceeding am section10.4.3 the solution to this is
Vi =/(4 - b -2os( tw2+  asim(/f (189

which is the samas Eq.(162) except thathe sign of the sine is flippetience the transfer
function of the system is

(az- 5 -4 %:fz) i4 pa

Hy(f)= _
) 160” 4f°+( &- b4 ’tp)

(a> -8 4 4?, fz0, (189
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which is identical toH, in Eq. (163 except that the sign ofis flipped. To map this to
Hy oz 1IN EQ. (120, we proceed as befoup to Eq.(169), which is the same except the sign
of i is flipped.Then flipping the sign of? and? , Eq. (170 becomes
a*- b
e= 5 =2d,d,

(22~ B) Ly

=" Fdd,)
160 (190

& df

Z
a

n= —
[(7 Y
al &- ad.d

t= > = 1pz =(d, d,)}dd,

Now when we compare these to E21), the equation forz implies f/ is equal tod,d,
andthe equation fore implies g, is 9, as aboveSubstituting forcosg, in the equation for
n,lis now zero instead. Substituting féf, cosg,, andl satisfies the equation far. Thus
the mapping betweehl . and H,.,.. Is:
2 2
d=2%0 4 & P oge &G 904 ¢ am
2p 2p 4°p
which isas per Eq(171) butl is zero instead obne The zeroes and polege are using to
characterize this transfer function are as in the previous exampl€,l£8.$ (174). Howev-
e,y this mapping, the systemd®))istdenticalgsoHgr f unc
in Eq. (175 except that the sign ois flipped:

f2- 2
dd,- f2 4f(d, a)
. a‘*- 6 4 u’
a’- B 4 H? 4 p
_1- 4pPLCH?
" 1- 4p°LCf? 42 RCF’

H.(f)=

(192
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Transfer Function of a System like the RLC Circuit but with a Changed Sign
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Figure 18: Transfer function of this system. Same as FidL6, except the sign of the phases is reversed.

10.5.4 Step Response from the Transfer Function
Substituting the mappingf Eq. (191) into the step response in E@182) and(133), the sg-
tembs step response i s

a . .
fNomhR(t)=step()—bstep(t-ge( boodoaw (193

which is nonrcausal with the transients in the second term only existing whismegative
and dying away asdecreasegk was not determined above, but it does not affect the step
response becausm®sg, is zero. Thus the Fourier analysis gave ohlg bne step response.)
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Step Response of a System like the RLC Circuit but with a Changed Sign
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Figure 19: Step response of this system. ltisneeaus al . The transi ent €ompalewdhFgut i n ne
17, which is for a system with the same transfer function exceple signs of the phases

10.5.5 System Stability
Substituting the complex frequensyfor i2pf (becausd is zer® see EQq.83)), the La-
placetransform transfer function is

2

1+$LC STc
Hy.(S) = = 19
v =12 LC wRC 2Rt (199
L~ LC

the same as E@177) (Laplace transforms are os@led, ignoring everything before time-z
ro, so different systems mehave the same Laplace transform transfer functilbs)poles,
a° t(Eq.s(142 and(143), are in the left hand side of theokane so the system is stable.
(Note that2pd, and 2pd, aredefinedas the distances of the poles into the lafichof thes-
plane in Eq(97), andthatthey are positive.) If one substitutedor -i2pf instead (as one
would if | was one), therH,. . would be the same except the sign of the s term in thendeno
inator would be flipped, which would lead to positive pélés which caseghe system would
be unstable. The roots of the characteristic equation({B§) are -a ° £, which are pas
tive, so the complementary solution is

Vic(=gé® ™ +g& 7" (195

SO any transients grow larger with titnevhich would suggest that the system is unstable,
except that the transients in the step respdisge(193) only exist for times before zero

(where they are always finite)! So this system appeare stable but nortausal.
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11 TheNotch-Delay Solar Model

The notchdelay solar model is specificarrangement of a notdtter, delayfilter, and a low

pass filter, and is itself a filter. It is organized into two parallel gathsdifecO pat - consi
ing of just the low pass filter, andhdindireco pat h consi sting of the
ard thenthe low pass fter. The model input is fed into each path; the model output is the

sum of the outputs of the paths.

11.1 Step Response of thimdirect Path

Theindirectpathof the notchkdelay filter consists of the notch filter, the delay filter, &mel

low pass filteyin a cascade. The transfer function of a cascade of LISs is the compdex pro
uct of the transfer functions of the individual L]Ssd kecause complex multiplication is
commutative and associativle individual LISs can be consideredbe in any ordein or-

der touser,, and avoid calculating the impulse responséhefotch filter or the inverse
transform of the product of the individual transfer functjoms will analyze thendirectpath
asorganizedn Fig. 20.

Inputting a step function to theindirectpath, the output of the notch filtersenply the step
response of the notch filtey,,,,. The output of a LIS is the convolution of its input and its
impulse responsgeg. (11)), so the output of thePFis r.,.,* h = and theoutput of the e-
tire indirectpath isry,, * Npe Npga:

. i i
theisjnapUt' Indirect Path of the Notch-Delay Solar Model : the output is the
step : I step response
I
function | 1
', N Notch ) Low Pass Y N Delay [! [ipatn >
i i * i ] * *
Step : filter Motch filter Motch h_PF filter : Motch h_PF hDeIay
I

Figure 20: Finding the step response of thendirect path in the notch-delay filter.

11.1.1 Notch and Low Pass Filter
The step response of thembination of thenotchand low pass filters j9y Eq.(71),

Y (0) H{rnoen et ()
= ﬁ urNotch(u)hLPF(t -U) du
=2prWﬁul’Nowh(U)exd '2/js¢ l:lj Step( u-iﬂu
t

=2pfowexp( -2 d,t) A Moen @ )exg 2 fau) du (196)
11.1.2 Notch with Complex Poles and Low Pass Filter
With complex polesy,,, becomes the,... of EQ.(116). The character of,.. is quite
different depending on whethkrs zero or one, so we treat them separai@hg results here
have been checked against numerical integratof the product of Eq(®4), (66), and(73)
in Eq.(59).
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If the notch filter has complex polesd| is zerq then r.. is givenby Eq.(118. If t ¢ 0
thenY (t) is
A
Y co(t) =20 fowexp( 2 M) ) Muoene o ) exif 2 fay) du

& A.cos(ngu) o A

=2p fawexp( -2dqt) () ex CW)§+B sm(WU) o

=2p fowexp( -2t t )

where
s= w2 A, (199

soby [Gradshteyn & Ryzhik, 1980, pp. 195, 2.662#2,#1]

_2pfawexe(- 2/t )f A-exp(su)egcod ) + i v g ¢
S+ W [+B exp(su)g ssin( gu) - cweo$ SLl)V@uz

_2ptwerl- 20 Aoolstegcod #) + onif oy
S’+ [+B exp(st)gssin( &) - jweo$ SI)/l/g,u

- aptovers )& E Mook 8 (A e )i

Y c,o(t)

(199

and

Y ¢0(0) =2p fBWﬁ)nrNotchc o) exy( 24 ) du
(As+B. W) (200

= 2pfsw ST+

Fort>0, Y(t) is

(t) =2pf WeXp( 2t )en rNotchC o(U)eXp(ZUféJ) du
6 mrNotchC O(U)eXp( Z) f é-'l) du

ey .(0)
i 2pfk
&Y .(0) +2rexp(27th)- 10
i2pfk 24,y
= Y.(0)exp( Pft) wFg-exp -Pfyt) g
=wr? -gw 7 - Y0) gxp( 2-Rt) .

=2p fawexp( -2 )]

=2pfawexp( -2 At); (201



Hence the step response of the ndtBtr cascadewhen the notch has complex posesll is

zerqis

(As +B wjcoy ) {A wB Jsi( Huw

f 21, expf w) g

Y eolt) =wi (202
1287 2 gw &p( 2 ) ift o
| é

If the notch filter has complex poles ahid oneinstead thenr,... is given by Eq(119). If
t ¢ 0 thenY (t) is, by Eq.(196),

Y ea(t) =20 fowexp( 246t [ Noene 1 0)EXE 2 ) du 4 (203

Fort>0, Y(t) is
Y i) =20 fowexp( 2 Ht) f} uoene €)X 2 fn1) du
= 2 fwexp( -zprB),jf” v exg e Ot %xb 21.p) du (204

1 &+B. sin(ngu)
e+r mexp( 2 f,u) du a
=2p fawexp( -2 fyt) AHJ exf W cof u)/d

T
i
I
| +B, mexp(cu) sin igu) du;/

—) -

where
-w 2 B, (205

so by[Gradshteyn & Ryzhik, 1980, pp. 195, 2.662#2,#1]
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Y ca(t) =wrexp( 2 ft) exd 2 ﬁgu)r_o

20wl 2 P exlco)egmod o) + vy
i+ |[+ B. exp(cu)g csin () - 100$ u)rl/@
=wr?exp( -2 f;t)gexd 2 fgt) g
E+A.exp(ct)@ ccod ) + 8 $w
22T chxf( @2’% )1 B.exp(ct)g csin| M- swo$ L
T'Acc B W
=wr?gl -exp 2/:t) g
E+A.exp( wct)gccog o) +gmif g
2,0: @j B.exp( w.t)gesin @) cweo$ SI)/V@L
- exp( Dht)[A ¢ B y

(206

D —)@—)—@)

Hence the step response of the ndtBtr cascade, when the notch has complex @old§is
one, is

€0 ift ¢ O
}rzgl- exp( -24:t) g
1 2pr ;
Yo ® =wi -2y @exp( P ft)[A ¢ B (207)
|
T 2pf, gr{Ac B glooy o) f
1[ +62+ @exp( %t)%“L[Ach "y 4sin( Mg ift ©.

Our examples continuedn Fig. 21.
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Step Response of a Notch-LPF Cascade
Four notch transfer functions that differ only by signs of i; complex poles

1.2
| ' z=zero angle = 87 Step function
- f,=zero frequency = 1/ (11.0 years) (input)
1.0 + ' p=pole angle =0

:5 | fp=pole frequency = 1/ (7.6 years) P -1 /r._._,_._._
= - w = low frequency value = 2.0 o e
2 o8 | fe=breakfrequency =1/ (5.0 years) /’ k=1 |=1 ,;,/
> F / ’
o d 7
= i I /7
> 06 ] k=1,1=0 | !
N 06 T =1,1= 7N ¢, £

L 4 \ /¢
g 7 \ , ' \‘ ', ’l \\‘\ I,,'
= L , Ve /7,
< ’ Wl d vy S
= I / (AN o4
g 047 ’ Ve N\ V
c I A Ve \ My
c . 4 \ ” NOA

| 04 U ~.’
<] A ST
? 0.2 T o k:O,|:0 ll_:l' \

0.0 pmmmazzzz=Z7 /
I I=1 sciencespeak.com
-0.2 e — :
-10 -5 0 5 10

Year

Figure 21: The step response o& notch filter in cascade with a low pass filter. These are the same filters as in Figg
(showing the four notch transfer functions that differ only bysigns ofi) and Fig. 6. Notice how the low pass filter
smooths the notch step responsespeciallythe prominent sharp corners atthe time origin.

11.1.3 Notch with Real Poles and Low Pass Filter
With real poles ., becomes the,... of Eq.(132. The character of. is quite df-

ferent depending on whedr | is zero or one, so we treat them separafBhe results here

have been checked against numerical integrations of the product d®B).&6), and(73)
in Eq.(59).

If the notch filter has real polesd| is zero,thenr,... is given byEq.(134) . If t ¢ 0 then
Y (t) is, by Eq.(196),

Y oo(t) =20 fowexp( 2 Het) fl Tyaens 0 0 )eXif 2 1) du

i & A exp( pdu)
= f - A &
2p Bwexp( Z,Cth) nug_l_BR exp( ZUdzUI)

& A

>~ AL explk,u) du

=2p fowexp( -2 dhgt) § I’} (k)
5B, ) exp(,u) du

gexpg 2 fau) du (208

[« e el S I

where
k =2 ,z(fB Jdl) and k,=2 /(fB sz), (209

SO
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Y po(t) =2p fowexp( 2 gt ).e % exf .4) E& exp 2u)r u
i

=2p fowexp( -2t t )? ~% exf ,® % exp Zty(g (210
i 1 Yy

:prng %exp( 2 t) ﬁ exqg 2@t) |
e M

[ e

and

Y, 0(0) =20 wﬁ o o) €XR( 2/ ) du
(211)
_ A B O

Z,Uf W? /(l é’ +

Fort>0, Y(t) is

e+ r.Notch ou ex f du
Yo ot) =2p fowexp( 246,1)¢ 7 s o0) X0 2 )
6 rJrNotchJR o(u) eXp( 20 f Bu) du

eYRO(O) f2
ot Dad |
ey, (0) fz2 exp( 2 fat) - 18 (212
i 2,0f d1d2 2 pfy y

2it) @

at)

e T =l )

exg 2 fau) du

=2p fawexp( -2 ft);

=2p fowexp( -2 dyt)i

= Y (0)exp(- D fyt)

Hence the step response of the ndtBtr cascade, when the notch has real pahel is ze-
ro, is

ift ®

[ O

fB + d1 fB -|d2

L S A exp( ) + 2 exf 20L1) §
© (213

e a4 A B 0f @ :
+éf, 2 + expl pf.t) ift 0.
é ¢ fetd fB+d2—d1dzu( )

If the notch filter has real poles ahds oneinstead then ry,... is given by Eq(139. If
t ¢ 0 thenY (t) is, by Eq.(196),

Y o) =20 fowexp( 2/4et) s 1 0)eXE 2 ) du (214

e}



Fort>0, Y(t) is

Y () =20 fowexp( 24:1) erchR L0)exif 2 ) du

ef
= 2p fwexp( prB)fjg *Aexel Py %pgzﬁgu)du (215
& - Byexp( -pd,u) {
=2p fawexp( -2yt )2 L,’—j exg 2 fau) du u
¢ 4 y
2 +A,Rr'jexp(ulu) du H
e ¢ u
§ - BRf‘Jexp(uzu) du
where
u=2f4f, d) and w,=24f, d,), (216
o)

_ ¢ f7 exp(pfu) A B ‘s
Y, (t) =2pfwexpl 24:t) ¢ exp W — exp ,uw
O =ptanel g o,y S T

A 2
& 1 exp(ZDth)ﬁmeXp(ut) B e u) o
dd 2o f, Y M U
=2p fawexp( -2 1) €™ y @1
¢ 1 A ¥
§ dd, 20f, y W v
X g
€d, T fp’R exp( -Pd) ‘fBLdeXp(' Pdh) &
:fBWélz B g O BT M2 u
€af2 1 . A B. 0 N
e Z _— 4 %Xp %ft u
é Eedldz fo fe-d fg-d, = ( B) ¢

Hence the step response of the ndtBtr cacade, when the notch has real paledl is one,
IS

Y (1) =we0 ift © (218
(R R
f e A B, 2
 — . exp( -2odt expg 2
{dd Bgfa' d1 p( 271) fB dz F( 7@2) H
1 e a A B. O f? @
- gf o+— expl pfgt ift O.
| acls 4 fy d, 2dd, ( Pft)

11.1.4 Notch, Low Pass Filter, and Delay
Now let us add in the effect of the delay filter (see B). The step response of the notch,
low pass, and delay filters combined is, by &q),
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rDPath(t) :{(r Notch h LPF) IAT\‘DeIa} (t)
= 1. YU)h(t Y du

=R, Yualt ¥ ddu
= Yt 4),

which of course ishe step response of the noldAF cascade delayed loly

(219

11.1.5 Notch with Complex Poles, Low Pass Filter, and Delay
The step response of thdirect path (.e. notch, delay, andlPF), when the notch has B
plex polesandl is zerq is, by Eq.4202) and(219),

8(A.s +B. w)cod utt -d) (A wB )si| swwd}
0 iftcd

Coan ) = wT { zp(f e wt @'d’] (s (220
[ e As + B : .

where theparameters are defined by E¢), (72), (94), (117), and(198). To make it (&
most) causald has to be positivi that is, the effect of the notdias to be delayed (notl-a
vanced)If | is one instead, the step response, by(HwjJ), is

€0 ift ¢ d
171 exil 24, ¢ d ]
P25 o it d)[A c B &

Mpatng A(0) = =wi i g ¢ A c B (221
|
T opf, g+[A.c -B. ylcod ut d)
Jf mexp[ W(t d)] +[ACW +BC dSIn[ é/@ d)] Ulft d!

where the parameters are defined by E8¢§, (72), (94), (117), and(205). Our example co-
tinues in Fig22.
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Step Response of a Notch-LPF-Delay Cascade (the Indirect Path)
Four notch transfer functions that differ only by signs of i; complex poles

1.2
| “z=zero angle = 87 Step function
- f,=zero frequency = 1/ (11.0 years) / (input)
1.0 + ' p=pole angle =0
%) | fo= pole frequency = 1/ (7.6 years) P ’
< = low frequency value = 2.0 / ;;r“"’
3 o8 | fa=breakfrequency =1/ (5.0 years) ,/ -1 =1 e
S - d=delay = 10.7 years / T
o I H 4
/,
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Figure 22: The step response of thendirect path in the Notch-Delay Solar Model a notch filter in cascade with a low
pass filter and a delay filter. As per Fig.21, except now with a delay. The delay makes the step responseisal.

11.1.6 Notch with Real Poles, Low Pass Filter, and Delay
The step response of timdirect path (.e. notch, delay, and LPF), when the notch has real
polesandl is zerq is, by Eq.g213) and(219),

6 & a
Py - fARd exp| 20, ¢ -d ] %exﬁ 2m, ¢ &) i ift d
10 ferds y
Npathi ,o(t) - Wl 2 & A A aR 0 f2 g (222
I 'z + &f -
[ T o pf € d]- ift d,
}dldz éB(; fa+d, f td, =+ dJ.dZ p[ j

where the parameters are defined by E§4, (72), (99), and (133). To make it (almost)
causald has to be positivdf | is one instead, the step response is instead, b2 Eg),

Npath . {)= W§O ift o (223
| ; N
~ e u
% 2 If ; exp[- 20d, ¢ -d ) %
194 tfgp o U
152 T BRexp[zod(telji
% I fg %
Toe a A BR 6 .
i - éfg aXp pf,t d ift d,
:' é Eef -d g d1d2 [ j-

where the parameters are defined by B84y (72), (99), and(133).
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11.2 Step Response of thdirect Path
The direct path just has the low pass filter, so its step response is given [fy@a@ndis
shown inFig. 6.

11.3 Step Response of thBotch-Delay Solar Model
The notchdelay solar modelis the sum of thairect and indirect paths, savhen the notch
filter has complex poleis step response is

oc®) =K gl -exp( Pfit) gtep() rye, t(, 1=0.1 (224)

(see Eq.4220) and(221) for rp.c c and r,.. 5). See Fig23. When the notch filter has real
poles thestep responsef the notchdelay solar modas

fow®) =KE -exp( D) gtep() ragy, t(, 1=01 (229

(see Eq.$222) and(223) for I o aNd rpgp o)-
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Step Response of the Notch-Delay Solar Model

Notch filter signifiers: k=0, =0
L ¢ =zero angle = 87 Step responsef the
1.8 + f,=zero frequency = 1/ (11.0 years) notch-delay solar model
- ' p=pole angle =0
) -+ fo= pole frequency = 1/ (7.6 years)
e - w = low frequency value = 1.0
‘g_ - fg=break frequency=1/(5.0years)y | | Sl " 7|7 T 777
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Step Response of the Notch-Delay Solar Model
Notch filter signifiers: k=0, 1=1

L ¢ =zero angle = 87 Step responsef the
1.8 + f,=zero frequency = 1/ (11.0 years) notch-delay solar model
- ‘' p=pole angle =0
= -+ fo=pole frequency = 1/ (7.6 years)
) - w = low frequency value = 1.0
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Figure 23: The step response of theotch-delay solar model is the sum of the step responses its direct and indirect

paths. Adds Figs 22 and 6 (after scaling

20

bympy and my ).
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11.4 Insight intothe Notch-Delay Solar Model Filter

According to the notcldelay solar theoryht Sun is the main driver of changes in surface
temperature here on Earth. However the effech primarily due to thedirect heating

fect of changes in bulk sunlighbecause thegre muchtoo small to have caused the global

warming of the last few decaddsastead, it is changes in some aspect of the furexan-

ple,per haps the amount of extr e(ioeexdhpld, pethapat af f
by ozone affecting the shape of jet streams and thus cloud formation, or by plankten man
facturing reflective aerosolsThe hypothesis is tha solar fore, at this stage unknown and
called Aforce Xo, drives surface temperatur e
critical feature of force X is that changes in force X lag one sunspot cycle, or 11 years on a
erage, behind corresponding changestal solar irradiance (TSI).

(AForce X07? Surely you must be joking, t hat
cartoons got their inspiratiofiom A x a ¥ svliose discovereAVilhelm Roéntgen, named
them thus to signify an unknown type of radati

We model this with a system whose input is TSI and whose output is surface temperature,
both functions of time. To a first approximation, surfeemperature$ollow force X, which

is proportional tothe TSI delayed byoughly 11 years. Tht step respnse is shown in Fig.

24,

Step Response of Solar Model with Just the Delay

- d=delay=10.7 years
3.0 T mpy= directpath multiplier = 0
| m = indirectpath multiplier = 3.0

2.0 il Step change in TSI
(input)

Step response-
correspondinghange
in surface temperature
on Earth(output)

0.0

-1.0 +

Change in TSI (W/m2) or Surface Temperature (°C)

I sciencespeak.com
2.0 | | | | ! | | | | ! | | | | ! | | | | ! i i i i

-5 0 5 10 15 20
Year

Figure 24: To a first approximation, the step response of the system whose inputTi$| and whose output is surface
temperature is a delay of about 0.7 years.
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But force X is attenuated during the sunspot maxpoasibly dropping briefly ta minimum

as the solar magnetic field reverses polafgyt during the sunspot maxima the T&aks
slightly, which causes surface temperatures tohysdirect heating the two effects largely
cancel out, resulting in the observed notch at around 11 years in the transfer function from
TSI to surface temperatur®o, to a second approximation, ferX is like the delayed TSI

but with a notch filter applied to reduce force X during the TSI peaksotitur during the
sunspot maxima.

Al t hough a notch was observed in the empiri
of that transfer function, sthe step response of the notch filter couldabpg of the eight

basic typedhat fit the observed transfer function amplitude (see Figl12, 13, 14, which
showrealandcomplex poleswith four combinations of signifiers andl). But four of them

are very similar to the causal step resppagsd four of them are like the n@ausal stepe-

sponseso we need only considiitose twostep responseblowever he actual step response

might be a mix of the twdeeFig. 25.

Step Responses of Solar Model with Just the Delay and the Notch

| *,=zero angle = 87 Thestep response , the
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% [ d=delay = 10.7 years h on Earth(output), is some
g 2.0 - mp = directpath multiplier = 0 :'. mix of SROG(@QJZO)
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Figure 25: To a second approximation, the system is@elay and anotch. We are not yet sure which of the two step
responses shown is appropriate.

But the Earth has a considete thermal momentum: heat the plaogimoving to a slightly
higher levelof extra sunlight or decreased albedo, and it takes a couple of years fanthe te
perature to rise and level off i3 new level So, to a third approximation, we introduce a low
pass filter to smooth out the temperature response of the Earth, as showr2é Fig.
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Step Response of Solar Model with Just the Indirect Path
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Figure 26: To athird approximation, the system is a delay, a notch, and a low pass filter.

Finally, the surface temperature is also charlgethedirect heating effect of TSIanges.
So we mustintroduce the diregbath, in parallel with the notch and delay of theirect path
but sharing the same low pass filter. See 1.



Step Response of the Notch-Delay Solar Model
(Full model -- both the direct and indirect paths)

— ' z=zero angle = 87 Thestep response , the
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Figure 27: Full model, with a direct path in parallel with the indirect path. The effect of thedirect path, for changes
in direct heating of Earth by TSI, is of relatively minor.

11.5 Simple Aoproximation to the NotchDelay Solar ModelFilter

The step response of tiND solar modelllustratedis gpproximated by aenteredl1-year
smootheywhoseoutput at time is simplythe plain, unweighted@dverage of the input over the
interval [t - 5.5yearst +5.5yea}s with the same delaynd scaled to match the final output
of the ND solar model filterThe step responses of both theykhr centered smoother and
the notch filter (and even more so thetchLPF cascadefrudely approximatethe step e-
sponse of the identity systei@eeFig. 28.
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Notch-Delay Solar Model Approximated by 11-Year Smoother Plus Delay
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Figure 28 An 11-year smootherwith-delayis a crude approximation of the notchdelay solar model.

12 Conclusion

The context of this document is develmeping
perature, given that carbon dioxide has only a minor effect.

The sunspot recoriom 1610is about all wehave measureabout the Sun, on a timescale of

more than a few decades. Those sunspot numbers have been converted to estimates of total
solar irradianceT(Sl), by comparing TSI and sunspots over the last fevadles and building

a model that translates between the two. So a system whose input is TSI and whose output is
the Earthodés surface temperature was studied,
system is presumably linear for the small pertudretinvolved, and is presumably invariant

(that is, does not change significantly with time), so the methods of Fourier analysis would
seem to apply.

It was found empirically that the magnitude of the transfer function of this system had a
prominent notchno matter whicldatasets or periods were examined. The notch had a center
frequencythat correspond to a periof ~11 years, the average length of the sunspot cycle
but only half the length of a full solar cycle. The phases of the transfer functionlarewn.

Thuswe are interested in all possible systems that could explain a notch in the magnitude of a
transfer function. We found that &%@rder filter is the least complicated filter that could

produce a notch, while higher order notch filters wase cascades of'2ordernotchfilters.

So, by Occamds razor,6 “oderfilttrocused just on a s
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The transfer function of a"2order notch filter is a ratio of twd'2order polynomials of &-
guency. Its numerator and denominator are ehenacterized by the roots of those polyn
mials, called the zeroes and poles respectively. Belfhgraler polynomials, there are two
zeroes and two poles. To get a notch in the magnitude of the filter, the zeroes mumst be co
plex (not real) and conjugate$ each otheand the magnitude of the imaginary part must be
greater than the magnitude of the real patile the poles can be either a complex conjugate
pair or both be ra.

It is convenient to parameterize the zeroes and the poles in polar coadvhate angles are
restricted to one quadrant (this also allows us to constrain the poles to be in the left half of the
complex frequency plane, as required for system stability). To allow for any zeroes and poles
meeting the above constraints (becausevamt to consider all possiblé“rder filters that
produce notches), we need to allow for both positive and negative square robtghat is,

°i) when factorizing each of the polynomials. The sign gives the sign of the pise
changes produced by the transfer function, so this is expressing sign ambiguity in the phases.
If we knew the phases of the empirical transfer function above we would know exactly which
transfer function to consider, but we do not.

Hence, given angombinationof two zeroes and two poles parameterized as above, there are
in general four possible transfer functions. They were described above by two binary vari
blesk andl, the sign signifiers, which respectively define the sign of the square rdotsirof

the numerator and denominator of the transfer funchime that the process is that we start
with zeroes and poles in one quadrémenfind the four associated transfer functions iwol

ing those poles and zeroes up to changes in signQ@iff couse, if we started with a given
transfer function and factorized tiwo polynomials then it would have a unigoe@mbination

of poles and zeroes

Note also that the notion of a zero or pole requires a specification of the factorizateen vari

bled otherwise we would not be sure what it is that, when equal to the zero or pole, makes
the polynomial 6s value zero. That specificat
is usually a complex frequency, in which case the sign of thethe complex frequency

needs to be specifi@dbecause it is arbitrary, representing either sine or negative sire. Fu

ther, there is no particular reason the zeroes and poles have to be with respect to the same fa
torization variable, so we presumably have tovalthem to differ. Thus there are a total of

four combinations of factorization variables, differenly in signs of.

We calculated the step response of a general transfer function"bbaiér filter from first
principles: express the step inputaasum of sinusoids, note the effect of the transfer function
on each input sinusoid to produce an output sinusoid at the same frequency, and sam the ou
put sinusoids to form the step responsee dddculationof the step responseas an algebra

fest involing definite integrals from a reference work, but it was checked using numerical
integration and then again by approximating the calculation using FFTs. In our examples we
also confirmed the step response by checking it satisfied the linear differendsibagrom

which the transfer function was derived.

Of the four possible transfer functions fogi@en combinationof two zeroes and two poles,
two have causal step responses and the other two haxeausaistep response€learlythe
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causal step respses are possibilities for the Skarth relationship, but what about the non
casual ones? Threnon-causality dies out exponentially with decreasing time, so simply d
laying the step response by a few years by combining the notch filter with a delay filte
makes the step response of the combined filter causal, to a good approxiSatwasura-

bly the noncausal step responses are also possibilities for thé&uh relationship, so long

as they are combined with a delay.

As an example we looked at a gilm RLC circuit that is known to act as a notch filter. We
found its transfer function by solving the linear differential equation of the circuit when the
input is a sinusoid. We then mapped that transfer function onto the form of the transfer fun
tion in our stepresponsecalculaton above, from which webtainedthe step responde
which was of course one of the causa@s (the circuit is reako it is causal).

For a second example we flipped the sign of time in the circuit equation in the first example,
to give a similar but crucially different transfer function. Its step response was one of the non
causal ones. By the way, becatisis simple seriesircuit is simpler than a generdl®@rder

filter, i does not appear in the numerator of its transfectian when expressed in itarsi

plest form, so there are only two versions of the transfer function to within the sighs of
andwe did one example for each version.

Appendix A Special Functions

The following functions are used here but are not standard.

A.1 Indicator function
From the set of all propositions to 0 and 1:

¢l  the proposition is true

o 22
proposition :,O the propOSition is fals ( @

For example, for some integur

&8 if N is ever

543, .. 3
Niseen 5 if N s odd.

A.2 Signum Function
Thesignum functore gn  ( pronounced fAsignumod) gives the

el x>0
sg1(x):{ 0 x 0 (227
b-1 x Q.

For examplesgn€ 0.4) =sgn( -10) =while sgn(0.7= sgn(24)=.

A.3 Step Function
The (unit) step functiorswitches from zero to one when its argument becomes positive:
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el x>0
X £ (229

ste(X) =i 3
0 x<0.

— ——

For examplestepf¢ 0.4) =step(-10) while step(0.7F step(24)f.

A.4 Eta Function
Theeta functionn (hi s t he Greek | etter fAetao) ics usef
tors of two that arise when dealing with sinusoids:

iff =0

“
2=2" 5 22
12 iff>o. (229

h is simply the number of normal (that is, redge) frequencies in a contéxtbere, because

there is only one frequency varialaled it is continuoughe only edge frequency is zero and

h is eitheroneorzer®e wusually omit its frequenmdy argu
rat hewm(ftdham @A or mul ae.

A.5 Phase Function

Arctan needs extending to be able to compute maardinate angles, for which we utbe
phase funiton pha( p r o n 0 u n.clteyiges fd amgledon a plane radiansin [0,20),
that the point(x, y) makes withthe xaxis:

pha(x, y)=garn'(y/¥ o L, gno® ¢t xyl R. (230
If (x,y) is in the first quadrant, the phase function simplifies to
phak,y)= tan'(y/X.

For examplepha(L, 0= (, pha(dy/ 3Fp/ ., pha(0,2=p/  andphat 1,0) 3

A similar function is théwo-argumentrctangentunctionatan2 but its range ii-p, /]7

Appendix B Acronyms

LIS Linear invariant system
LPF Low pass filter

Appendix C Electrical Engineering

Electrical engineers (EEs) have a lotexiperience with systems, Fourier analysis, transfer
functions, and step responsésis is the area of human endeavor that uses them explicitly

and regularl vy, mor e t hmethodavogyhaedrexpearieneeaisfocusétlo we v ¢
on causal systems, bers® a circuit, by its very existence, is casual. Assuming causality
makes solving circuita lotsimpler.
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(By the way, the only method known to the author to find the step response’bbrale

notch filter without assuming causalityg using Fourier analysis as above, which is much
more complicated than the methods routinely used by EEs. It was only using this method that
the noncausal step responses came to light. Note that"ther@er differential equation for

the filter cannobe solved without first correctly guessing the form of the particular solution.)

The most common and powertolol EEs use to solve circuits in the frequency domain is the
Laplace transform. This is a generalization of the Fourier transform from sindsoxs

osoids éxponetially increasingor decreasing sinusoiddhe product of an exponential

growth factor and a sinusqid, but this requiresi dédd, trheanil
times before zero are omitted from the integrals (because otherwigste¢grand wouldn-

clude exposoidmcreasing without limit as time decreakethe Laplace transform of a fan

tion g:R- R is

£{g}=L9 Fape*d (231)
0
where
s=s Hw =si& ft (232

is the complex frequencycailbBal Lagybacentt amasf
happens at negative times:

ég(t) t2 0 i

£{g}=£{9(} lorazyt) <0 '

(233

In particular, the Laplace transform of asaal step response is identical to the Laplacesiran
form of a norcausal step response that is the same fomegative times.

Thus the Laplace transform cannot be used to deteetaussuality.Instead we can use the
Fourier transform because it is twidesd® that is, takes function values over all time ints a
count. Or we can solve circuit equations directly, but the circuit equations are lineamndiffere
tial equations and solving them is arduduwshich is why EEs developed methods to avoid
solving them diectly from first principles.

Ask an EE websitésuch aghis) or use a tool likeMatlabto find a step response from the
transfer function, circuit values, or the zeroes and palegsyou will only get the causaina
swers. These have bepresumablycalculated using formulas using the Laplace transform.

Digital circuits are relevant is no much as they approximate analog circuits, whicheare rel
vant becausare described bthe same simple linealifferential equations as relationships
often arein the natural world. However digital circuits are clocketheren the state of the
circuit at each tick of the clock is computed from the state in the previous tick plus the change
in input since the praous tick With bazillions ofticks per second, such a circadn bean
excellent approximation of an analfiger. However, technically digital circuit is not a LIS,
because it is not invariant (though it is still linear). The output depends on tivaenput

start® ary input that starts during the current clock cycle will produce the same ougput, b
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cause the circuit does natigi until the next cycle beginBigital circuits are necessarily €a
ual, because they start in a zeroed state and there canolo¢put until the input begins.

Acknowledgements

Thank you to Bernard Hutchins, an electrical engineer in I{idea York, who persistently
guestionedny initial erroneousonclusion that the step response of a notch was necessarily
noncausal[Hutchins, 2014] He correctly poirgd out thatelectronicnotch filters can be
causal,andincluded measuements othe step response of a circuit that implements a notch
filter. (Initially, in the calculation of the step resporsiea 2 order filter whose transfer
function magnitude showed a notdtoverlookedthe possibility of different signs afin the
transfer function. As it happensdid the calculation witlthe sign signifiersk and| effective-

ly both set to zerdEqg. (83))d leading to a noitausal step responsaly. So for a while it
looked like a notch filter was necausal and necessarily must be accompanied by a delay to
make it approximately causal. But once the role of the sign signifiers was realizede-after r
view prompted by Bernie, it all made sense.)

References

Edminister, J. A. (1965)Theoryand Problems of Electric CircuitddcGrawHill (Schaum's
Outlines).

Evans, D. M. (2013, September 1#he Optimal Fourier Transform (OFTRetrieved from
http://jonova.s3.amazonaws.com/cfa/optifalrier-transform.pdf

Evans, D. M. (2016, January). ThetsleDelay Solar Theory.

Gradshteyn, I. S., & Ryzhik, I. M. (1980)lable of Integrals, Series, and Products
(Corrected and Enlarged EditionAcademic Press.

Hutchins, B. A. (2014, July 30)Application Note 413.Retrieved from Electronotes:
http://electronotes.netfirms.com/AN413.pdf

Okawa Electric Design. (2015RLC Bandstop Filter Design Tool Retrieved from
Engineering Design Utilities: http://sim.okawi@nshi.jp/en/RLCtool.php

Tseng, Z. S. (2008 Math 251 Cass NotesRetrieved May 2015, 10, from Penn State
University, Mathematics Department:
http://www.math.psu.edu/tseng/class/Math251/Notes
2nd%200rder%200DE%20pt2.pdf

77



	1 Introduction
	2 System Definitions
	2.1 System
	2.2 Linear System
	2.3 Invariant System
	2.4 Linear Invariant System (LIS)

	3 Impulse Responses
	3.1 Impulse
	3.2 Impulse Response
	3.3 Calculating the Output of a LIS

	4 Sinusoids
	4.1 Definition
	4.2 Polar and Rectangular Coordinates
	4.3 Sinusoids and all LISs
	4.4 Complex Numbers as an Accounting Tool for Sinusoids

	5 The Fourier Transform (FT)
	5.1 FTs of Complex-Valued Functions
	5.2 FTs of Real-Valued Functions
	5.3 FTs of Time Series
	5.4 FTs of Derivatives and Integrals
	5.5 FTs of Delayed Functions
	5.6 LISs, and the Time and Frequency Domains
	5.7 Taking the FT of Both Sides of an Equation

	6 Transfer Functions
	6.1 Transfer Function of a LIS
	6.2 Transfer Function and Impulse Response
	6.3 Convolution
	6.4 Cascaded LISs

	7 Step Responses
	7.1 Step Response
	7.2 Causality
	7.3 Calculating the Step Response from the Transfer Function

	8 Low Pass Filters (LPFs)
	9 Delay Filters
	10 Notch Filters
	10.1 The Simplest LIS that is a Notch Filter
	10.1.1 A Generic LIS
	10.1.2 A First-Order LIS Is Too Simple to Be a Notch Filter
	10.1.3 A Second-Order LIS Can Be a Notch Filter
	10.1.4 Higher-Order Notch Filters

	10.2 Second-Order Notch Filters
	10.2.1 Complex Poles
	10.2.2 Real Poles

	10.3 Step Response of a Second-Order Notch Filter
	10.3.1 Complex Poles
	10.3.2 Real Poles

	10.4 Example 1: Series RLC Circuit
	10.4.1 The System
	10.4.2 Differential Equation
	10.4.3 Transfer function
	10.4.4 Step Response from the Transfer Function
	10.4.5 System Stability
	10.4.6 Step Response by Solving the Differential Equation

	10.5 Example 2: Reversed Series RLC Circuit
	10.5.1 The System
	10.5.2 Differential Equation
	10.5.3 Transfer function
	10.5.4 Step Response from the Transfer Function
	10.5.5 System Stability


	11 The Notch-Delay Solar Model
	11.1 Step Response of the Indirect Path
	11.1.1 Notch and Low Pass Filter
	11.1.2 Notch with Complex Poles and Low Pass Filter
	11.1.3 Notch with Real Poles and Low Pass Filter
	11.1.4 Notch, Low Pass Filter, and Delay
	11.1.5 Notch with Complex Poles, Low Pass Filter, and Delay
	11.1.6 Notch with Real Poles, Low Pass Filter, and Delay

	11.2 Step Response of the direct Path
	11.3 Step Response of the Notch-Delay Solar Model
	11.4 Insight into the Notch-Delay Solar Model Filter
	11.5 Simple Approximation to the Notch-Delay Solar Model Filter

	12 Conclusion
	Appendix A Special Functions
	A.1 Indicator function
	A.2 Signum Function
	A.3 Step Function
	A.4 Eta Function
	A.5 Phase Function

	Appendix B Acronyms
	Appendix C Electrical Engineering
	Acknowledgements
	References

